12,035 research outputs found

    Growth mechanisms of perturbations in boundary layers over a compliant wall

    Full text link
    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary-layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity/wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. This greatly simplifies the accurate calculation of the continuous spectrum by means of a spectral method, thereby yielding a very effective filtering of the pseudospectra as well as a clear identification of instability regions. The regime of global instability is found to be matching the regime of the favorable phase of the forcing by the flow on the compliant wall so as to enhance the amplitude of the wall. An energy-budget analysis for the least-decaying hydroelastic (static-divergence, traveling-wave-flutter and near-stationary transitional) and Tollmien--Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the flow exhibits a slower transient growth for the maximum growth rate of a superposition of streamwise-independent modes due to a complex dependence of the wall-boundary condition with the Reynolds number. The initial and optimal perturbations are compared with the boundary-layer flow over a solid wall; differences and similarities are discussed. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. A slowdown of the maximum growth rate with the Reynolds number is uncovered and found to originate in the transition of the fluid-solid interaction from a two-way to a one-way coupling. Finally, a term-by-term energy budget analysis is performed to identify the key contributors to the transient growth mechanism

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    The Enhanced Sensitivity of the Transmission Phase of a Quantum Dot to Kondo Correlations

    Full text link
    The strong sensitivity of the transmission phase through a quantum dot embedded into one arm of a two-wave Aharonov-Bohm interferometer to the Kondo effect is explained. The enhancement takes place because of the buildup of the exchange scattering on the dot due to Kondo correlations even much above TKT_{K}. The enhanced exchange competes with the potential scattering, which is always weak. Both cases of the Anderson impurity model and a multilevel quantum dot are considered. In the latter case in addition to the description of peculiar phase behavior a mechanism leading to ferromagnetic Kondo coupling in quantum dots is proposed.Comment: 4 pages, 2 figure

    Gravity anomaly detection: Apollo/Soyuz

    Get PDF
    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown

    Supersolids versus phase separation in two-dimensional lattice bosons

    Full text link
    We study the nature of the ground state of the strongly-coupled two dimensional extended boson Hubbard model on a square lattice. We demonstrate that strong but finite on-site interaction U along with a comparable nearest-neighbor repulsion V result in a thermodynamically stable supersolid ground state just above half-filling, and that the checker-board crystal is unstable for smaller V, and for any V just below half-filling. The interplay between these two interaction energies results in a rich phase diagram which is studied in detail using quantum Monte Carlo methods.Comment: 4 p., 5 eps figure

    Support for graphicacy: a review of textbooks available to accounting students

    Get PDF
    This Teaching Note reports on the support available in textbooks for graphicacy that will help students understand the complexities of graphical displays. Graphical displays play a significant role in financial reporting, and studies have found evidence of measurement distortion and selection bias. To understand the complexities of graphical displays, students need a sound understanding of graphicacy and support from the textbooks available to them to develop that understanding. The Teaching Note reports on a survey that examined the textbooks available to students attending two Scottish universities. The support of critical graphicacy skills was examined in conjunction with textbook characteristics. The survey, which was not restricted to textbooks designated as required reading, examined the textbooks for content on data measurement and graphical displays. The findings highlight a lack of support for graphicacy in the textbooks selected. The study concludes that accounting educators need to scrutinize more closely the selection of textbooks and calls for more extensive research into textbooks as a pedagogic tool

    Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light

    Get PDF
    We describe a system for long-distance distribution of quantum entanglement, in which coherent light with large average photon number interacts dispersively with single, far-detuned atoms or semiconductor impurities in optical cavities. Entanglement is heralded by homodyne detection using a second bright light pulse for phase reference. The use of bright pulses leads to a high success probability for the generation of entanglement, at the cost of a lower initial fidelity. This fidelity may be boosted by entanglement purification techniques, implemented with the same physical resources. The need for more purification steps is well compensated for by the increased probability of success when compared to heralded entanglement schemes using single photons or weak coherent pulses with realistic detectors. The principle cause of the lower initial fidelity is fiber loss; however, spontaneous decay and cavity losses during the dispersive atom/cavity interactions can also impair performance. We show that these effects may be minimized for emitter-cavity systems in the weak-coupling regime as long as the resonant Purcell factor is larger than one, the cavity is over-coupled, and the optical pulses are sufficiently long. We support this claim with numerical, semiclassical calculations using parameters for three realistic systems: optically bright donor-bound impurities such as 19-F:ZnSe with a moderate-Q microcavity, the optically dim 31-P:Si system with a high-Q microcavity, and trapped ions in large but very high-Q cavities.Comment: Please consult the published version, where assorted typos are corrected. It is freely available at http://stacks.iop.org/1367-2630/8/18

    The role of long waves in the stability of the plane wake

    Get PDF
    This work is directed towards investigating the fate of three-dimensional long perturbation waves in a plane incompressible wake. The analysis is posed as an initial-value problem in space. More specifically, input is made at an initial location in the downstream direction and then tracing the resulting behavior further downstream subject to the restriction of finite kinetic energy. This presentation follows the outline given by Criminale and Drazin [Stud. in Applied Math. \textbf{83}, 123 (1990)] that describes the system in terms of perturbation vorticity and velocity. The analysis is based on large scale waves and expansions using multi scales and multi times for the partial differential equations. The multiscaling is based on an approach where the small parameter is linked to the perturbation property independently from the flow control parameter. Solutions of the perturbative equations are determined numerically after the introduction of a regular perturbation scheme analytically deduced up to the second order. Numerically, the complete linear system is also integrated. Since the results relevant to the complete problem are in very good agreement with the results of the first order analysis, the numerical solution at the second order was deemed not necessary. The use for an arbitrary initial-value problem will be shown to contain a wealth of information for the different transient behaviors associated to the symmetry, angle of obliquity and spatial decay of the long waves. The amplification factor of transversal perturbations never presents the trend - a growth followed by a long damping - usually seen in waves with wavenumber of order one or less. Asymptotical instability is always observed.Comment: accepted Physical Review E, March 201

    Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy

    Full text link
    We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which combines first-principles calculations and low-temperature STM experiments. Density functional theory calculations show that Fe-Ni alloy surfaces are buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards. This is consistent with the observation that the atoms in the surface layer can be chemically distinguished in the STM image: brighter spots (corrugation maxima with increased apparent height) indicate iron atoms, darker ones nickel atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with frequent Fe-rich defects on Invar alloy surface. The calculations also indicate that subsurface composition fluctuations may additionally modulate the apparent height of the surface atoms. The STM images show that this effect is pronounced compared to the surfaces of other disordered alloys, which suggests that some chemical order and corresponding concentration fluctuations exist also in the subsurface layers of Invar alloy. In addition, detailed electronic structure calculations allow us to identify the nature of a distinct peak below the Fermi level observed in the tunneling spectra. This peak corresponds to a surface resonance band which is particularly pronounced in iron-rich surface regions and provides a second type of chemical contrast with less spatial resolution but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure
    corecore