15,866 research outputs found

    Mo MĂșsaem FĂ­orĂșil: a web-based search and information service for museum visitors

    Get PDF
    Abstract. We describe the prototype of an interactive, web-based, museum artifact search and information service. Mo MĂșsaem FĂ­orĂșil clusters and indexes images of museum artifacts taken by visitors to the museum where the images are captured using a passive capture device such as Microsoft's SenseCam [1]. The system also matches clustered artifacts to images of the same artifact from the museums o cial photo collection and allows the user to view images of the same artifact taken by other visitors to the museum. This matching process potentially allows the system to provide more detailed information about a particular artifact to the user based on their inferred preferences, thereby greatly enhancing the user's overall museum experience. In this work, we introduce the system and describe, in broad terms, it's overall functionality and use. Using different image sets of artificial museum objects, we also describe experiments and results carried out in relation to the artifact matching component of the system

    Dynamics of a cold trapped ion in a Bose-Einstein condensate

    Full text link
    We investigate the interaction of a laser-cooled trapped ion (Ba+^+ or Rb+^+) with an optically confined 87^{87}Rb Bose-Einstein condensate (BEC). The system features interesting dynamics of the ion and the atom cloud as determined by their collisions and their motion in their respective traps. Elastic as well as inelastic processes are observed and their respective cross sections are determined. We demonstrate that a single ion can be used to probe the density profile of an ultracold atom cloud.Comment: 4 pages, 5 figure

    Adiabatic pumping through a quantum dot in the Kondo regime: Exact results at the Toulouse limit

    Full text link
    Transport properties of ultrasmall quantum dots with a single unpaired electron are commonly modeled by the nonequilibrium Kondo model, describing the exchange interaction of a spin-1/2 local moment with two leads of noninteracting electrons. Remarkably, the model possesses an exact solution when tuned to a special manifold in its parameter space known as the Toulouse limit. We use the Toulouse limit to exactly calculate the adiabatically pumped spin current in the Kondo regime. In the absence of both potential scattering and a voltage bias, the instantaneous charge current is strictly zero for a generic Kondo model. However, a nonzero spin current can be pumped through the system in the presence of a finite magnetic field, provided the spin couples asymmetrically to the two leads. Tunneling through a Kondo impurity thus offers a natural mechanism for generating a pure spin current. We show, in particular, that one can devise pumping cycles along which the average spin pumped per cycle is closely equal to ℏ\hbar. By analogy with Brouwer's formula for noninteracting systems with two driven parameters, the pumped spin current is expressed as a geometrical property of a scattering matrix. However, the relevant %Alex: I replaced topological with geometrical in the sentence above scattering matrix that enters the formulation pertains to the Majorana fermions that appear at the Toulouse limit rather than the physical electrons that carry the current. These results are obtained by combining the nonequilibrium Keldysh Green function technique with a systematic gradient expansion, explicitly exposing the small parameter controlling the adiabatic limit.Comment: 14 pages, 3 figures, revised versio

    Ferrotoroidic Moment as a Quantum Geometric Phase

    Full text link
    We present a geometric characterization of the ferrotoroidic moment in terms of a set of Abelian Berry phases. We also introduce a fundamental complex quantity which provides an alternative way to calculate the ferrotoroidic moment and its moments, and is derived from a second order tensor. This geometric framework defines a natural computational approach for density functional and many-body theories

    Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Get PDF
    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.Comment: 4 pages, 3 figure

    Negative frequency tuning of a carbon nanotube nano-electromechanical resonator

    Get PDF
    A suspended, doubly clamped single wall carbon nanotube is characterized as driven nano-electromechanical resonator at cryogenic temperatures. Electronically, the carbon nanotube displays small bandgap behaviour with Coulomb blockade oscillations in electron conduction and transparent contacts in hole conduction. We observe the driven mechanical resonance in dc-transport, including multiple higher harmonic responses. The data shows a distinct negative frequency tuning at finite applied gate voltage, enabling us to electrostatically decrease the resonance frequency to 75% of its maximum value. This is consistently explained via electrostatic softening of the mechanical mode.Comment: 4 pages, 4 figures; submitted for the IWEPNM 2013 conference proceeding

    Striped Magnetic Ground State of the Kagome Lattice in Fe4Si2Sn7O16

    Get PDF
    We have experimentally identified a new magnetic ground state for the kagome lattice, in the perfectly hexagonal Fe2+ (3d6, S = 2) compound Fe4Si2Sn7O16. Representational symmetry analysis of neutron diffraction data shows that below T_N = 3.5 K, the spins on 2/3 of the magnetic ions order into canted antiferromagnetic chains, separated by the remaining 1/3 which are geometrically frustrated and show no long-range order down to at least T = 0.1 K. Moessbauer spectroscopy confirms that there is no static order on the latter 1/3 of the magnetic ions - i.e., they are in a liquid-like rather than a frozen state - down to at least 1.65 K. A heavily Mn-doped sample Fe1.45Mn2.55Si2Sn7O16 has the same magnetic structure. Although the propagation vector q = (0, 1/2 , 1/2 ) breaks hexagonal symmetry, we see no evidence for magnetostriction in the form of a lattice distortion within the resolution of our data. We discuss the relationship to partially frustrated magnetic order on the pyrochlore lattice of Gd2Ti2O7, and to theoretical models that predict symmetry breaking ground states for perfect kagome lattices.Comment: 5 pages, 5 figure

    A variational framework for flow optimization using semi-norm constraints

    Full text link
    When considering a general system of equations describing the space-time evolution (flow) of one or several variables, the problem of the optimization over a finite period of time of a measure of the state variable at the final time is a problem of great interest in many fields. Methods already exist in order to solve this kind of optimization problem, but sometimes fail when the constraint bounding the state vector at the initial time is not a norm, meaning that some part of the state vector remains unbounded and might cause the optimization procedure to diverge. In order to regularize this problem, we propose a general method which extends the existing optimization framework in a self-consistent manner. We first derive this framework extension, and then apply it to a problem of interest. Our demonstration problem considers the transient stability properties of a one-dimensional (in space) averaged turbulent model with a space- and time-dependent model "turbulent viscosity". We believe this work has a lot of potential applications in the fluid dynamics domain for problems in which we want to control the influence of separate components of the state vector in the optimization process.Comment: 30 page

    Ultrasound mapping of lymph node and subcutaneous metastases in patients with cutaneous melanoma: Results of a prospective multicenter study

    Get PDF
    Background: Ultrasound (sonography, B-mode sonography, ultrasonography) examination improves the sensitivity in more than 25% compared to the clinical palpation, especially after surgery on the regional lymph node area. Objective: To evaluate the distribution of metastases during follow-up in the draining lymph node areas from the scar of primary to regional lymph nodes ( head and neck, supraclavicular, axilla, infraclavicular, groin) in patients with cutaneous melanoma with or without sentinel lymph node biopsy (SLNB) or former elective or consecutive complete lymph node dissection in case of positive sentinel lymph node (CLND). Methods: Prospective multicenter study of the Departments of Dermatology of the Universities of Homburg/Saar, Tubingen and Munich (Germany) in which the distribution of lymph node and subcutaneous metastases were mapped from the scar of primary to the lymphatic drainage region in 53 melanoma patients ( 23 women, 30 men; median age: 64 years; median tumor thickness: 1.99 mm) with known primary, visible lymph nodes or subcutaneous metastases proven by ultrasound and histopathology during the follow-up. Results: Especially in the axilla, infraclavicular region and groin the metastases were not limited to the anatomic lymph node regions. In 5 patients (9.4%) ( 4 of them were in stage IV) lymph node metastases were not located in the corresponding lymph node area. 32 patients without former SLNB had a time range between melanoma excision and lymph node metastases of 31 months ( median), 21 patients with SLNB had 18 months ( p < 0.005). In 11 patients with positive SLNB the time range was 17 months, in 10 patients with negative SLNB 21 months ( p < 0.005); in 32 patients with CLND the time range was 31 m< 0.005). In thinner melanomas lymph node metastases occurred later ( p < 0.05). Conclusions: After surgery of cutaneous melanoma, SLNB and CLND the lymphatic drainage can show significant changes which should be considered in clinical and ultrasound follow-up examinations. Especially for high-risk melanoma patients follow-up examinations should be performed at intervals of 3 months in the first years. Patients at stage IV should be examined in all regional lymph node areas clinically and by ultrasound. Copyright (c) 2006 S. Karger AG, Basel
    • 

    corecore