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Abstract. We describe the prototype of an interactive, web-based, mu-
seum artifact search and information service. Mo Musaem Fioruil clusters
and indexes images of museum artifacts taken by visitors to the museum
where the images are captured using a passive capture device such as
Microsoft’s SenseCam [1]. The system also matches clustered artifacts to
images of the same artifact from the museums official photo collection
and allows the user to view images of the same artifact taken by other
visitors to the museum. This matching process potentially allows the
system to provide more detailed information about a particular artifact
to the user based on their inferred preferences, thereby greatly enhanc-
ing the user’s overall museum experience. In this work, we introduce the
system and describe, in broad terms, it’s overall functionality and use.
Using different image sets of artificial museum objects, we also describe
experiments and results carried out in relation to the artifact matching
component of the system.

1 Introduction

The traditional museum visitor experience has been characterized by having to
choose between a limited number of predefined guided tours and the challenge of
visiting on one’s own. Despite the stimulating environment created in museums,
they often fall short of supporting their visitors, either before, during, or after
the visit, in terms of analyzing and learning about what’s been seen and found
to be of interest. One way museums have attempted to tackle this problem is
with the increasing use of audio guides. Visitors select audio sequences related
to particular pieces by keying in a code associated with a particular artifact, or
perhaps a particular exhibition space within the museum. In the latter case, the
visitor is then guided around the space by the audio guide, visiting the artifacts
in a pre-planned way, designed by museum personnel. One obvious advantage
of audio guides is their availability in multiple languages. However, the use of
audio guides presents several drawbacks for both the museum and its visitors.
The audio guide can present auditory information only, excluding other forms of
communication which may be more interesting, or more effective, such as written
text, images, video, or interactive applications. They require the visitors to key



in the code for each exhibit and this can become frustrating and detract from
the overall experience.

One possibility for making exhibitions more attractive to the visitor is to im-
prove the interaction between the visitor and the objects of interest by means of
supplementary information either during or after the visit. Targeting the latter
initially, we have developed an interactive museum information Web 2.0 proto-
type system that is able to automatically index and retrieve information about
the objects a visitor found interesting. The visitor, wearing a passive image cap-
ture device, generates images of various artifacts whilst wandering around the
museum. The device could be supplied by the museum and retrieved at the end
of each visit, thereby ensuring control over the image collections generated. In
order to subsequently access their personalised museum tour via the museum’s
web site, visitors need only be supplied with a unique username. Once they get
home, they can log on to the museum website and relive their museum experi-
ence by browsing their photos and automatically recommended supplementary
material, chosen based on their known interactions. Given that the system can
determine which particular artifacts the user visited, additional information (e.g.
sketches, 3D models, explanatory text, professional photos, etc) about a partic-
ular object could be provided to the user, as well as images other visitors have
captured of the same artifact. This has the ancillary benefit of increasing us-
age of museum web-resources and providing web access to museum catalogues,
but not at the expense of deterring visitors — a key concern for museums when
considering web-based services.

The choice of passive image capture as a means of gathering data about a vis-
itor’s museum experience carries with it two key advantages. Firstly, it provides
a visual record of what the user saw as opposed to simply where he/she was.
This potentially allows us to infer user preferences and interests in a more finely
grained manner than location-based sensing (e.g. we could determine which spe-
cific artifact in a display case was of particular interest). Secondly, adopting such
capture devices is a relatively straightforward extension of audio tours that does
not require any re-engineering of the museum infrastructure itself unlike, say, a
costly installation of a RF-ID tracking system. Of course, this technology choice
also brings its own challenges. Not least of these is the uneasiness (or in fact out-
right refusal in many cases) of many museums to allow image capture of their
collections. However, this is changing slowly as museums consider new business
models based on emerging technology and indeed some museums have already
embraced the concept of personal image capture for non-professional /commercial
purposes. London’s Tate Modern has recognised the advantages of encouraging
it’s visitor’s to interact (email content home, respond to questions, etc.) with the
exhibits [2]. The Rijksmuseum in Amsterdam is exploring similar possibilities [3].
One goal of our work is to demonstrate the possibilities of state-of-the-art imag-
ing technology in this application context. In this paper, we briefly describe the
overall functionality of the proposed system, however, our main focus is on the
artifact recognition component and the initial proof of concept results obtained
with a small number of artificial museum artifacts.



The rest of this paper is organized as follows. In Section 2, we review related
work in this area. We introduce our system in Section 3 and discuss the artifact
matching system used in this work in Section 4. In Section 5, we outline the
experiments performed and results obtained. This is followed by a discussion in
Section 6, whilst future work and conclusions are discussed in Section 7.

2 Related Work

The value of multimedia for a mobile museum guide is discussed by Proctor &
Tellis [2] who present an extended user study conducted at the Tate Modern in
2002. They highlight the components necessary for a successful museum installa-
tion: content, user interface, applications, form factor and positioning. Fockler et
al. developed PhoneGuide [4], a system which supports on-device object recogni-
tion on a mobile phone. They extracted a number of low-level colour features and
classified the images using a single layer perceptron neural network. However,
the use of colour features means that their system is not robust to changes in
lighting, viewpoint and illumination. In addition, the method is not compatible
across different models of mobile phone due to the varying colour responses of
the cameras used in different models.

Bay et al. [5] proposed an Interactive Museum Guide using a tablet PC with a
touchscreen, a webcam, and a bluetooth receiver. The guide recognizes objects on
display in the museum based on images of particular artifacts taken directly by
the visitor. The system then displays additional information to the user about the
object in question. In addition, the system can determine the visitor’s location
by receiving signals emitted from bluetooth nodes located in different display
areas throughout the museum. This information is used to reduce the search
space for the extraction of relevant objects. A similar system using infrared for
location identification was developed by [6]. However, these systems all require
a certain level of infrastructure to be built and maintained within the museum
and many museums may be reluctant to accept these technological intrusions.
In addition, the current hardware platforms used are cumbersome and are not
practical in real scenarios. Other approaches include robots that guide users
through museums [7]. However, these are not appropriate for individual use and
are difficult to adapt to different environments.

Each of the described approaches involves the introduction of a novel piece of
hardware equipment into the museum environment (i.e. robots, PDA’s, mobile
phones, tablet PC’s). The presence of the technology itself changes the dynamic
of the museum experience for the visitor as described by Semper et al. [8]. They
describe how the introduction of handheld devices to the museum environment
tended to distract people from freely using their hands to interact with the
exhibits (a highly interactive science museum in their study). This is due to the
fact that the visitor had to actually hold the device in their hands, and some were
afraid of damaging an expensive piece of equipment [9], and the visitor spent
more time reading the content displayed on the device, as opposed to focusing
on the information and artifact’s on display in the museum. They also found



that using handhelds disrupted the normal social interactions between members
of social groups. This is analogous to similar social consequences arising from
the use of mobile phones in every day life. We believe that these issues can
be overcome by using passive capture devices to record the user’s visit and
experience.

Passive capture devices are cameras which automatically take pictures with-
out any user intervention [10] [11]. They are ideal for use in a museum envi-
ronment as they allow the visitor to record their experiences without conscious
thought. The advantages of this method of capturing photos are increased cov-
erage of, and improved participation in, the event itself. However, the passive
capture of photos presents new problems, particularly, how to manage and organ-
ise the massively increased volume of images captured [12]. Traditional systems
for content-based image retrieval are not up to this task. In [11] the authors
describe the MyLifeBits system, which is a first step in tackling this problem,
specifically in relation to the images captured by SenseCam. MyLifeBits also
captures other forms of digital media and is a step toward’s fulfilling Bush’s
Memex vision [13]. Other forms of passive capture devices include the Startle-
Cam [10] and the Campaignr project [14]. Campaignr is a software framework
for mobile phones that enables owners of smartphones (specifically Symbian Se-
ries 60 3rd edition phones) to participate in data gathering campaigns. We use
images captured by the SenseCam and a Nokia N95 running the Campaignr
software in this work. Both the SenseCam and N95 are worn around the visitors
neck to allow the capture of images in a passive manner (see Figure 1).

Fig. 1. User shown wearing the SenseCam

The task of identifying similar artifacts within a database of images remains
challenging due to viewpoint or lighting changes, deformations, and partial oc-
clusions that may exist across different examples. Global image features, based
on image properties such as colour or texture, have proven to be of limited use
in these real-world environments. Instead, researchers have recently turned to
representations based on local features that can be reliably detected and are
invariant to the transformations likely to occur across images (i.e. photometric
or various geometric transformations).

One approach has been to use a corner detector to identify repeatable image
locations, around which local image properties can be measured. Schmid et al.



[15] developed one of the earliest object matching systems using these features.
They extracted local gray value feature points with a Harris corner detector, and
then created a local image descriptor at each interest point. These image descrip-
tors were used for robust object recognition by looking for multiple matching
descriptors that satisfied object-based orientation and location constraints. How-
ever, this approach only examined an image at a single scale. As the change in
scale becomes significant, these detectors respond to different image points.

More recently, there has been great progress in the use of invariant features
[16] [17] for object matching. With these features, robustness to small changes
in viewpoint as well as to partial occlusion is achievable and objects can be
recognized anywhere in an image, with arbitrary size, rotation, and without
using a previous object segmentation step [18]. It follows, therefore, that these
features can be matched more reliably than traditional methods such as cross-
correlation using Harris corners.

3 Museum Information System

Mo Misaem Fiordil (My Virtual Museum in the Irish language) is a web-based
museum artifact search service where the users of the service, after visiting a
museum and taking a number of photos of artifacts, can upload their photos to
a website and find information about the artifacts those photos had captured.
On its web interface, a user’s uploaded photos are displayed with the groupings
of photos automatically formed based on the unique artifacts among the photos,
and the user can drag and drop the photos into different groupings if wished.
Once a particular grouping that features a unique museum artifact is selected,
the system presents a list of museum artifacts that matches the user’s photos, and
selecting one of these will present full information about the artifact. Another
way to view the interaction paradigm of this service is that the museum visitor
can use their photos as query images to the service, and the retrieval result shows
full information about the artifacts those photos contain.

Two passive capture devices were used to acquire the images used in this
system - the Microsoft SenseCam and a Nokia N95 running the Campaignr
software. Should users wish to manually capture an image, they can do so using
the SenseCam, by simply pressing a button on the side of the camera, or by
using the N95 in the traditional manner in which camera phones operate. In this
initial prototype, artificial artifacts have been used with images captured in a
lab environment. The artifacts are limited in size to 30 x 20 x 30 cm, due to the
constraints imposed by our object model capture system (see section 4). The
descriptions of the recognised artifacts are fictional and are intended to simulate
the workings of a real system. Once the user has selected an artifact of interest,
the system will also show the pre-captured model of the artifact, that the user
can rotate 360°. Images that other users have taken of the same object and which
may also be of interest are also displayed. The system is freely accessible online
for demonstration purposes (http://www.eeng.dcu.ie/ vmpg/ksDemo/ks.html).
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Fig. 2. Museum Information System

In order to demonstrate the artifact matching capabilities of our system, we
created a database with artifical museum objects. The database contains images
of 10 different objects, taken from multiple viewpoints with lighting, rotation
and scale changes. A sample image of each of the 10 chosen objects is shown in
Figure 3.

4 Object Matching System

Model images are generated using a static camera rig and an automated turntable.
The turntable is situated in a light tent with diffuse ambient lighting and a
controlled known-colour background. Each artifact is placed on the table and
captured as it is rotated. The object is then segmented from the background
using a straightforward chroma-keying process.

In order to perform matching, we utilize an approach similar to that outlined
by [17]. This approach uses the SIFT local descriptors as they have proved
well-adapted to matching and recognition tasks as they are robust to partial
visibility and clutter. Mikolajczyk et al. [19] have compared several descriptors
for matching and found that SIFT descriptors perform best so we continue with
SIFT on this basis. In order to perform object matching, we follow the following
procedure. First, the SIFT features are computed from the input image. Each



Fig. 3. Sample images of the 10 artificial artifacts

keypoint is then independently matched to the database of keypoints extracted
from the training images. This feature matching is done through a Euclidean-
distance based nearest neighbor approach. Many of these initial matches will
be incorrect due to ambiguous features or features that arise from background
clutter. To increase robustness, matches are rejected for those keypoints for
which the ratio of the nearest neighbor distance to the second nearest neighbor
distance is greater than 0.8. This discards many of the false matches arising from
background clutter. Finally, to avoid the expensive search required for finding the
Euclidean distance based nearest neighbor, an approximate algorithm, called the
Best-Bin-First (BBF) algorithm [20] is used. This is a fast method for returning
the nearest neighbor with high probability. For a database of 100,000 keypoints,
this provides a speedup over exact nearest neighbour search by about 2 orders
of magnitude yet results in less than a 5% loss in the number of correct matches.

Although the distance ratio test described above discards many of the false
matches arising from background clutter, we can still have matches that belong
to different objects. Therefore to increase robustness to object identification,
we want to cluster those features that belong to the same object and reject
the matches that are left out in the clustering process. This is done using the
Hough Transform [21]. Each keypoint specifies 4 parameters: 2D location, scale
and orientation. Using these parameters we use the Hough Transform to identify
clusters of features that vote for the same object pose. The probability of the
interpretation being correct is much higher than for any single feature. Each
keypoint votes for the set of object poses that are consistent with the keypoint’s
location, scale, and orientation. Bins that accumulate at least 3 votes are identi-
fied as candidate object/pose matches. Therefore, clusters of at least 3 features
are first identified that agree on an object and its pose, as these clusters have a
much higher probability of being correct than individual feature matches. Then,
each cluster is checked by performing a detailed geometric fit to the model, and
the result is used to accept or reject the interpretation.



For each candidate cluster, a least-squares solution for the best estimated
affine projection parameters relating the training image to the input image is
obtained. If the projection of a keypoint through these parameters lies within
half the error range that was used for the parameters in the Hough transform
bins, the keypoint match is kept. If fewer than 3 points remain after discarding
outliers for a bin, then the object match is rejected. The least-squares fitting is
repeated until no more rejections take place.

5 Experimental Results

A number of experiments were carried out on different combinations of test and
model images. We created 3 sets of model images. The reasons for the choice
of three different model sets were the use of two different cameras and in order
to determine if the effort required to segment the artifacts from the background
using the static camera rig (see section 4) was justified. The first set of model
images, labeled mI1, were captured using the static camera rig. This created
images of size 320 x 240, taken from 12 different viewing angles around the
artifact, of each of the 10 artifacts in our database. This allows for a greater
degree of view-point independence. Due to the fact that our training images
were all taken from different viewing angles, we only use 5 of these images in
this model set (although the 12 images are used to rotate the artifact on the
user interface) (see Figure 4). This gave a total of 50 model images.

Fig. 4. Example of the 5 model images for one of the 10 artifacts

The second set of model images, labeled m2, contained 3 SenseCam images
for each artifact in the database, taken from 3 different viewing angles in front
of the artifact in question. This gave a total of 30 model images. The final model
collection, m3, consisted of 10 images (1 for each artifact) taken with the higher
resolution Nokia N95 camera. Sample images from m2 and m3 can be see in
Figure 5.

We used two different test sets, one for each of the cameras used. 100 images
of size 640 x 480 were taken with the Microsoft SenseCam and 100 images of
size 2592 x 1944 with the Nokia N95. Each set contains multiple images of all
objects with differing scale, rotation, viewpoint and lighting conditions. Images
were captured by simulating a museum visitors inspection of the artifacts. The
objects used are made of different materials, have different shapes, and include
ceramic vases, statues and jugs, metal and stone items, and a teddy bear. Some
of the objects were placed on a glass table which produced interfering reflections.



Fig. 5. Example of SenseCam (1°* row) & N95 (2"¢ row) model images

Each test image set was evaluated on each model set, giving a total of 6 different
sets of experimental results. We used the confusion matrix in order to evaluate
our results, however, due to constraints on space we only show 4 sets of results
(shown in Tables 1-4). The results obtained using the model set m1 were omitted
as they were the poorest. The remaining results represent those obtained against
the second, m2, and third, m3, sets of model images. The significant difference
between these two sets of model images and set m1 is that the background is
available and, therefore, provides features for recognition.

The results varied considerably across each combination of test and model
sets of images. The Footballer proved challenging across all experiments. The
highest recognition rate achieved for this artifact was only 40% using SenseCam
test images and the m2 set of model images. Other objects, such as the Statue,
could not be detected at all using SenseCam and the mI set of model images,
but achieved recognition rates of 80% using SenseCam test images and model
images m2. Recognition rates of 100% were obtained for the Striped Vase and
Vinegar using N95 test images and the m3 set of model images. In general
terms, the worst performing results were those obtained using the set of images
captured using the static camera rig (m1) for both cameras. The best sets of
results were obtained when both the test and model images were taken with the
same cameras. However, impressive results can also be seen using test and model
images from different cameras.

True classes[Teddy|Cellar[Floral vase[Blue jug[Footballer[Navy Jug|Plaque[White Statue[Striped vase|Vinegar
Teddy 80 0 0 0 0 0 20 0 0 0
Cellar 20 | 60 0 0 0 0 20 0 0 0
Floral vase 30 0 40 10 0 0 10 0 0 10
Blue jug 30 0 0 50 0 0 10 10 0 0
Footballer 60 0 0 0 40 0 0 0 0 0
Navy jug 10 0 0 20 0 50 20 0 0 0
Plaque 0 0 0 0 0 0 90 0 10 0
White statue |0 0 0 10 0 0 10 80 0 0
Striped vase | 20 0 0 0 10 0 10 0 60 0
Vinegar 10 0 0 0 0 0 0 10 92

0
Table 1. Confusion matrix for SenseCam test and model images
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True classes|Teddy|Cellar|Floral vase|Blue jug|Footballer|Navy Jug|Plaque[White Statue[Striped vase|Vinegar|

Teddy 80 0 10 0 0 0 10 0 0 0
Cellar 20 50 10 0 0 0 0 10 20 0
Floral vase 40 0 10 0 0 0 0 10 30 10
Blue jug 20 0 0 30 0 0 0 10 20 20
Footballer 0 20 10 0 10 0 20 10 30 0
Navy jug 11 11 0 11 0 23 0 11 33 0
Plaque 10 0 0 0 0 0 90 0 0 0
White statue 20 20 0 0 0 0 40 20 0
Striped vase 10 0 10 0 10 0 0 70 0
Vinegar 0 8 8 0 0 0 0 40 84

0
0
0
Table 2. Confusion Matrix for N95 test and SenseCam model images

True classes|Teddy|Cellar|Floral vase|Blue jug|Footballer|Navy Jug|Plaque[White Statue|Striped vase|Vinegar

Teddy 80 0 0 0 0 0 20 0 0 0
Cellar 0 70 0 0 0 0 20 0 0 10
Floral vase 20 | 10 50 0 0 0 20 0 0 0
Blue jug 0 | 10 10 40 10 0 10 0 0 10
Footballer 20 10 10 0 30 0 20 0 0 10
Navy jug i1 0 0 0 [ 78 0 0 0 0
Plaque 10 0 0 0 10 0 80 0 0 0
White statue |_60_| 10 10 0 0 0 10 10 0 0
Striped vase | 0 0 0 0 0 0 0 0 0 0
Vinegar 5 0 0 0 0 0 100

0 0 0
Table 3. Confusion matrix for N95 test model images

6 Discussion

The poor results obtained using the segmented model images (m1) was sur-
prising, as this is an approach often taken in the object recognition literature.
However, in many of the test images the artifacts were extremely small in size
meaning that the image contained a lot of background. In many of these cases,
the algorithm found more matches on the background objects leading to a match-
ing failure. These initial results would therefore suggest that the effort required
to remove the background from the images, using the static camera rig, is not
justified.

The importance of including the background as part of the model image can
be seen in the improvement in results using the remaining sets of model images.
Certain artifacts were successfully matched despite variations in lighting, scale,
rotation and viewpoint. However, the recognition performance for others was
quite low. This was again due to the background, however, it was caused by
deficiencies in our experimental setup. Certain artifacts were taken in exactly
the same location (i.e. we placed one object on the surface, captured images of
it, and then replaced it with the next artifact). This meant that the background
information in certain groups of artifacts was the same. In situations where the
artifact did not provide enough robust or discriminant features, the background

True classes[Teddy|Cellar|Floral vase[Blue jug|Footballer|Navy Jug|Plaque[White Statue|Striped vase|Vinegar
Teddy 60 0 0 10 10 0 10 10 0 0
Cellar 30 | 60 0 0 0 0 20 0 10 0
Floral vase 20 | 10 0 20 10 10 20 0 10 0
Blue jug 10 0 20 30 0 0 20 0 10 0
Footballer 0 | 20 0 0 30 20 0 0 0 10
Navy jug 0 10 0 0 0 90 0 0 0 0
Plaque 0 | 10 0 0 0 0 70 0 10 0
White statue | 30 | 10 0 0 0 0 20 30 0 10
Striped vase | 0 0 10 0 0 0 0 0 90 0
Vinegar 0 | 10 20 0 0 0 10 0 20 30

Table 4. Confusion matrix for SenseCam test and N95 model images
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information was used to match the image. In many cases, the background was
matched to the same background object but the image contained a different
artifact captured in the same location. In particular, if we examine table 1 we
can see that many artifacts have been incorrectly classifed as being an instance
of a Teddy or a Plaque. This was due to this particular issue and further testing
should yield improved results in this regard. In a realistic museum setting, this
problem should not occur.

7 Conclusions

We have presented a novel system for providing visitors to a museum a means
of interacting with and learning more about their visit. The system incorporates
a passive capture camera device and a web-based user interface. The camera
captures images continuously during the museum visit. These can then be up-
loaded to the system, via the website, allowing the user to browse their own
photo collection, match their images to images from the museums private image
collection, access more detailed information concerning artifacts of interest, and
also view images other visitors to the museum have taken of similar artifacts.
We also described in detail the operation of the artifact matching element of
the system and presented some experimental results. This element of the system
uses SIFT images features which are robust to changes in lighting, scale and
rotation.

Much future work remains. As we extend to more museum artifacts, the
matching accuracy and speed of the system will decrease as many more similar
artifacts are added. In addition, more background clutter could lead to more
false detections. We plan to explore the use of location based methods in order
to assist us in reducing the search space necessary to match in a database of
many more musuem artifacts.
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