16,015 research outputs found

    Adiabatic pumping through a quantum dot in the Kondo regime: Exact results at the Toulouse limit

    Full text link
    Transport properties of ultrasmall quantum dots with a single unpaired electron are commonly modeled by the nonequilibrium Kondo model, describing the exchange interaction of a spin-1/2 local moment with two leads of noninteracting electrons. Remarkably, the model possesses an exact solution when tuned to a special manifold in its parameter space known as the Toulouse limit. We use the Toulouse limit to exactly calculate the adiabatically pumped spin current in the Kondo regime. In the absence of both potential scattering and a voltage bias, the instantaneous charge current is strictly zero for a generic Kondo model. However, a nonzero spin current can be pumped through the system in the presence of a finite magnetic field, provided the spin couples asymmetrically to the two leads. Tunneling through a Kondo impurity thus offers a natural mechanism for generating a pure spin current. We show, in particular, that one can devise pumping cycles along which the average spin pumped per cycle is closely equal to â„Ź\hbar. By analogy with Brouwer's formula for noninteracting systems with two driven parameters, the pumped spin current is expressed as a geometrical property of a scattering matrix. However, the relevant %Alex: I replaced topological with geometrical in the sentence above scattering matrix that enters the formulation pertains to the Majorana fermions that appear at the Toulouse limit rather than the physical electrons that carry the current. These results are obtained by combining the nonequilibrium Keldysh Green function technique with a systematic gradient expansion, explicitly exposing the small parameter controlling the adiabatic limit.Comment: 14 pages, 3 figures, revised versio

    Mycophenolate mofetil inhibits lymphocyte binding and the upregulation of adhesion molecules in acute rejection of rat kidney allografts.

    Get PDF
    Mycophenolate mofetil (MMF) interacts with purine metabolism and possibly with the expression of adhesion molecules. In the present study, we analysed the expression of these molecules in transplanted kidney allografts treated with RS LBNF1 kidneys were orthotopically transplanted into Lewis rats and either treated with RS (20 mg/kg/day) or vehicle. Rats were harvested 3, 5 and 7 days following transplantation. For binding studies, fresh-frozen sections of transplanted kidneys were incubated with lymph node lymphocytes (LNL) derived from transplanted rats. Additionally, immunohistology was performed with various monoclonal antibodies. In general, MMF resulted in better preservation of graft structure by 7 days. Cellular infiltration and tubular atrophy were less pronounced. At day 3, macrophages were diminished in MMF-treated animals to a high extent, while the number of T cells was almost identical to that of controls. In addition, the number of cells positive for MHC class II and LFA-1 was reduced in the MMF-treated animals. These findings correlated with the binding results. Three days following engraftment, LNL bound to MMF-treated kidneys to a lesser extent compared to controls. In conclusion, MMF resulted in a markedly reduced leucocytic infiltrate, presumably based on a reduced expression of lymphocytic adhesion molecules and an interaction with macrophages

    Ferrotoroidic Moment as a Quantum Geometric Phase

    Full text link
    We present a geometric characterization of the ferrotoroidic moment in terms of a set of Abelian Berry phases. We also introduce a fundamental complex quantity which provides an alternative way to calculate the ferrotoroidic moment and its moments, and is derived from a second order tensor. This geometric framework defines a natural computational approach for density functional and many-body theories
    • …
    corecore