16,131 research outputs found
Adiabatic pumping through a quantum dot in the Kondo regime: Exact results at the Toulouse limit
Transport properties of ultrasmall quantum dots with a single unpaired
electron are commonly modeled by the nonequilibrium Kondo model, describing the
exchange interaction of a spin-1/2 local moment with two leads of
noninteracting electrons. Remarkably, the model possesses an exact solution
when tuned to a special manifold in its parameter space known as the Toulouse
limit. We use the Toulouse limit to exactly calculate the adiabatically pumped
spin current in the Kondo regime. In the absence of both potential scattering
and a voltage bias, the instantaneous charge current is strictly zero for a
generic Kondo model. However, a nonzero spin current can be pumped through the
system in the presence of a finite magnetic field, provided the spin couples
asymmetrically to the two leads. Tunneling through a Kondo impurity thus offers
a natural mechanism for generating a pure spin current. We show, in particular,
that one can devise pumping cycles along which the average spin pumped per
cycle is closely equal to . By analogy with Brouwer's formula for
noninteracting systems with two driven parameters, the pumped spin current is
expressed as a geometrical property of a scattering matrix. However, the
relevant %Alex: I replaced topological with geometrical in the sentence above
scattering matrix that enters the formulation pertains to the Majorana fermions
that appear at the Toulouse limit rather than the physical electrons that carry
the current. These results are obtained by combining the nonequilibrium Keldysh
Green function technique with a systematic gradient expansion, explicitly
exposing the small parameter controlling the adiabatic limit.Comment: 14 pages, 3 figures, revised versio
Mycophenolate mofetil inhibits lymphocyte binding and the upregulation of adhesion molecules in acute rejection of rat kidney allografts.
Mycophenolate mofetil (MMF) interacts with purine metabolism and possibly with the expression of adhesion molecules. In the present study, we analysed the expression of these molecules in transplanted kidney allografts treated with RS LBNF1 kidneys were orthotopically transplanted into Lewis rats and either treated with RS (20 mg/kg/day) or vehicle. Rats were harvested 3, 5 and 7 days following transplantation. For binding studies, fresh-frozen sections of transplanted kidneys were incubated with lymph node lymphocytes (LNL) derived from transplanted rats. Additionally, immunohistology was performed with various monoclonal antibodies. In general, MMF resulted in better preservation of graft structure by 7 days. Cellular infiltration and tubular atrophy were less pronounced. At day 3, macrophages were diminished in MMF-treated animals to a high extent, while the number of T cells was almost identical to that of controls. In addition, the number of cells positive for MHC class II and LFA-1 was reduced in the MMF-treated animals. These findings correlated with the binding results. Three days following engraftment, LNL bound to MMF-treated kidneys to a lesser extent compared to controls. In conclusion, MMF resulted in a markedly reduced leucocytic infiltrate, presumably based on a reduced expression of lymphocytic adhesion molecules and an interaction with macrophages
Mesoscopic magnetoelectric effect in chaotic quantum dots
The magnitude of the inverse Faraday effect (IFE), a static magnetization due
to an ac electric field, can be strongly increased in a mesoscopic sample,
sensitive to time-reversal symmetry (TRS) breaking. Random rectification of ac
voltages leads to a magnetization flux, which can be detected by an asymmetry
of Hall resistances in a multi-terminal setup. In the absence of applied
magnetic field through a chaotic quantum dot the IFE scale, quadratic in
voltage, is found as an analytic function of the ac frequency, screening, and
coupling to the contacts and floating probes, and numerically it does not show
any effect of spin-orbit interaction. Our results qualitatively agree with a
recent experiment on TRS-breaking in a six-terminal Hall cross.Comment: 4+ pages, 2 figures; v2-published version, small change
- …