341 research outputs found

    Bunch length measurements in LEP

    Get PDF
    For many years a streak camera has been used for observing the longitudinal distribution of the particles in any LEP e+ or e- bunch (5-50 ps r.m.s. length) on a turn by turn basis, using synchrotron light. In 1996, a comparison made with the longitudinal vertex distributions of 3 LEP experiments allowed the identification and elimination of certain systematic errors in the streak camera measurements. In 1997, a new bunch length measurement technique was commissioned that uses the high frequency slope of the bunch power spectrum from a button pickup. In 1998, this new method was confronted with measurements from the streak camera and the LEP experiments. The measurements made in 1996 and 1998 are presented, with emphasis on the calibration of the two instrumental methods and their respective precision and limitations

    LHC BPM design

    Get PDF
    Already in 1997, 8 years before the expected commissioning date of the LHC, the design of the detectors for the orbit system has to be completely terminated. The paper describes the BPM design highlighting the chain of arguments that have led to this particular solution

    Considerations for an Ac Dipole for the LHC

    Get PDF
    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc

    Microstructure and velocity of field-driven solid-on-solid interfaces moving under stochastic dynamics with local energy barriers

    Full text link
    We study the microscopic structure and the stationary propagation velocity of (1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such as a magnetic field or a difference in (electro)chemical potential. We use an analytic nonlinear-response approximation [P.A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] together with kinetic Monte Carlo simulations. Here we consider interfaces that move under Arrhenius dynamics, which include a microscopic energy barrier between the allowed Ising/lattice-gas states. Two different dynamics are studied: the standard one-step dynamic (OSD) [H.C. Kang and W. Weinberg, J. Chem. Phys. 90, 2824 (1992)] and the two-step transition-dynamics approximation (TDA) [T. Ala-Nissila, J. Kjoll, and S.C. Ying, Phys. Rev. B 46, 846 (1992)]. In the OSD the effects of the applied force and the interaction energies in the model factorize in the transition rates (a soft dynamic), while in the TDA such factorization is not possible (a hard dynamic). In full agreement with previous general theoretical results we find that the local interface width under the TDA increases dramatically with the applied force. In contrast, the interface structure with the OSD is only weakly influenced by the force, in qualitative agreement with the theoretical expectations. Results are also obtained for the force-dependence and anisotropy of the interface velocity, which also show differences in good agreement with the theoretical expectations for the differences between soft and hard dynamics. Our results confirm that different stochastic interface dynamics that all obey detailed balance and the same conservation laws nevertheless can lead to radically different interface responses to an applied force.Comment: 18 pages RevTex. Minor revisions. Phys. Rev. B, in pres

    Luminosity optimisation using beam-beam deflections at LEP

    Get PDF
    In maximizing the performance of the LEP electron-positron collider it is important to ensure that the beams collide head-on at the interaction points. The deflection of the beams due to the beam-beam interactions has been measured using orbit monitors located close to the interaction points. The dependence of the beam-beam deflection on the transverse distance between the beams has been used to optimise the overlap of the beams in the vertical plane and to measure the beam sizes at the interaction points

    Equilibrium and Stability of Polarization in Ultrathin Ferroelectric Films with Ionic Surface Compensation

    Full text link
    Thermodynamic theory is developed for the ferroelectric phase transition of an ultrathin film in equilibrium with a chemical environment that supplies ionic species to compensate its surface. Equations of state and free energy expressions are developed based on Landau-Ginzburg-Devonshire theory, using electrochemical equilibria to provide ionic compensation boundary conditions. Calculations are presented for a monodomain PbTiO3_3 (001) film coherently strained to SrTiO3_3 with its exposed surface and its electronically conducting bottom electrode in equilibrium with a controlled oxygen partial pressure. The stability and metastability boundaries of phases of different polarization are determined as a function of temperature, oxygen partial pressure, and film thickness. Phase diagrams showing polarization and internal electric field are presented. At temperatures below a thickness-dependent Curie point, high or low oxygen partial pressure stabilizes positive or negative polarization, respectively. Results are compared to the standard cases of electronic compensation controlled by either an applied voltage or charge across two electrodes. Ionic surface compensation through chemical equilibrium with an environment introduces new features into the phase diagram. In ultrathin films, a stable non-polar phase can occur between the positive and negative polar phases when varying the external chemical potential at fixed temperature, under conditions where charged surface species are not present in sufficient concentration to stabilize a polar phase.Comment: 53 pages, 24 figure

    Cyanide-modified Pt(111) : structure, stability and hydrogen adsorption

    Get PDF
    A.C. acknowledges the support of the DGI (Spanish Ministry of Science and Innovation) through Project CTQ2009-07017. W.S. acknowledges financial support by the Deutsche Forschungsgemeinschaft under Schm 344/40-1, Schm 344/34-1.2 and FOR 1376. W.S. and P.Q. thank DFG-CONICET International Cooperation and CONICET for continued support. E.P.M.L. and M.Z.-M. wish to acknowledge CONICET PIP: 112-200801-000983, Secyt UNC, Program BID (PICT 2006N 946), and PME: 2006-01581 for financial support. P.Q. acknowledges PICT 0737-2008. A generous grant of computing time from the Baden-Wuerttemberg grid is gratefully acknowledged. M.E.-E. acknowledges an FPI fellowship from the Spanish Ministry of Science and Innovation and an accommodation grant at the Residencia de Estudiantes from the Madrid City Council.Peer reviewedPostprin

    Excitation of Large Transverse Beam Oscillations without Emittance Blow-up using the AC-Dipole Principle

    Get PDF
    The so-called "AC-Dipole" principle allows the excitation of transverse oscillations to large (several sigma) excursions without emittance blow-up. The idea was originally proposed and tested at BNL for resonance crossing with polarized beams, using an orbit corrector dipole with an excitation frequency close to the betatron tune, hence "AC-Dipole". This method of beam excitation has several potential applications in teh LHC, such as phase advance and beta-measurements, dynamic aperture studies and the investigation of resonance strengths. The technique was recently tested in the CERN SPS using the transverse damper as an "AC-Dipole" providing the fixed frequency excitation. Results from this experiment are presented, along with an explanation of the underlying principle

    Performance of the new SPS beam position orbit system (MOPOS)

    Get PDF
    The orbit and trajectory measurement system COPOS of the CERN SPS accelerator has been in operation since the construction of the machine in 1976. Over the years the system has been slightly modified in order to follow the evolving demands of the machine, in particular for its operation as a p-pbar collider and, since 1991, for the acceleration of heavy ions. In 1995 the performance of the system was reviewed and the following shortcomings were identified: - lack of turn-by-turn position measurements due to the 1ms integration time of the voltage to frequency converters used for the analogue to digital conversion (to be compared with a revolution time of 23 ms), - ageing effects on the 200 MHz resonating input filters, which had over the years drifted out of tolerance. As a consequence the signal to noise ratio, the linearity and the absolute precision were affected, - the calibration system based on electromechanical relays had become very unreliable, such that frequent calibrations were no longer possible, - a remote diagnostic for the observation of timing signals relative to the beam signals was missing. For the above reasons a large-scale upgrade program was launched, the results of which are described in the following sections
    • 

    corecore