81 research outputs found

    Accelerating global parameter estimation of gravitational waves from Galactic binaries using a genetic algorithm and GPUs

    Full text link
    The Laser Interferometer Space Antenna (LISA) is a planned space-based gravitational wave telescope with the goal of measuring gravitational waves in the milli-Hertz frequency band, which is dominated by millions of Galactic binaries. While some of these binaries produce signals that are loud enough to stand out and be extracted, most of them blur into a confusion foreground. Current methods for analyzing the full frequency band recorded by LISA to extract as many Galactic binaries as possible and to obtain Bayesian posterior distributions for each of the signals are computationally expensive. We introduce a new approach to accelerate the extraction of the best fitting solutions for Galactic binaries across the entire frequency band from data with multiple overlapping signals. Furthermore, we use these best fitting solutions to omit the burn-in stage of a Markov chain Monte Carlo method and to take full advantage of GPU-accelerated signal simulation, allowing us to compute posterior distributions in 2 seconds per signal on a laptop-grade GPU.Comment: 13 pages, 11 figure

    Neotectonic fault structures in the Lake Thun area (Switzerland)

    Get PDF
    Strong historic earthquakes (i.e. intensities I0 ≄ V) are well documented by the earthquake catalogue of Switzerland ECOS-09 (e.g. Frutigen, 1729 AD, Mw=5.2, I0=VI). Many of these strong events can be recognized paleoseismically by large subaquatic, earthquake-triggered mass movements that occur frequently in Swiss Lakes. Some of these represent the occasional occurrence of even stronger earthquakes (i.e. Mw ~6.5) in the Alpine region (Strasser et al., 2013), which are expected to produce noticeable surface ruptures. However, convincing evidence for Quaternary displacements with offset surface expressions have scarcely been found (e.g., Wiemer et al., 2009). Applying a multi-disciplinary approach, this study presents potential candidates for such faults in the larger Lake Thun area at the edge of the Alps. The overdeepened basin of Lake Thun is situated at the northern Alpine front, which extends orthogonally to the general strike direction of the Alpine nappe front. The northern shoreline is predominantly shaped by the front of the Subalpine Molasse, which is in strong contrast to the south western shore built by the structurally higher units of the Middle and Lower Penninic nappes. This pattern with obvious differences of both lake sides suggests a major fault along the lake axis and high tectonic activity during nappe emplacement, i.e. from Eocene times throughout the Late Miocene. The area is dominated today by a strike-slip stress regime with a slight normal faulting component (Kastrup et al., 2004). As part of a multi-disciplinary study, attempting to find potential neotectonically active fault structures in the Lake Thun area, a 2D ground penetrating radar (GPR) survey was conducted. The aim of the GPR survey was to link observations from a multichannel reflection seismic survey and a multibeam bathymetric survey carried out in Lake Thun with findings in a nearby gravel quarry revealing suspicious deformation features such as rotated gravel clast as well as significantly offset horizons. The GPR data reveal the occurrence of several morphologic depressions from gypsum cones and clearly dipping reflections. The reflection seismic data set shows prominent reflections, characteristic seismic facies and a few sets of normal and reverse faults in the north western part of the lake basin within the glacio-lacustrine deposits that may point to a transpressional strike-slip regime. A first neotectonic analysis links these prominent lake floor features with geomorphologic patterns from the surrounding landscape, pointing to a potential candidate for a fault that is active in the Quaternary period

    Subaquatic moraine amphitheatre in Lake Thun

    Get PDF
    The combination of a recently acquired high-resolution multibeam bathymetric dataset with 2D multichannel reflection seismic data from perialpine Lake Thun reveals new insights into the evolution of the lake basin upon deglaciation and a so far unknown subaquatic moraine. These new data improve our socomprehension of the landforms associated with the ice-contact zone, the facies architecture of the sub- to proglacial units, the related depositional processes, and thus the retreat mechanisms of the Aare Glacier. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glaciation periods. Seismic stratigraphic analysis of the new data indicates that below the outermost edge of a morphologically distinct platform in the southeastern part of the lake basin (‘Bödeli’), a complex ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a stack of several subaquatic terminal moraine crests, most likely created by a slightly advancing or stagnant and grounded Aare Glacier during its overall retreat phase. Packages of overridden moraine crests are distuinguishable, which smoothly transform downstream into prograding clinoforms with foresets with internally recognisable layering. They dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This stacked succession of subaquatic glacial sequences is overlain by lacustrine deposits formed by Late-Glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of the retreating Aare Glacier between its recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacier stabilization or slight readvance. Radiocarbon-dated calcareous clay gyttja of Late-Glacial Lake Amsoldingen, located adjacent to the water outlet of Lake Thun, shows a ~16.3 ka BP age (Lotter, 1985), providing a minimum age for the formation of the postglacial small lake. Higher up in the catchment, the oldest 10Be exposure ages from the Grimsel area, the accumulation area of the Aare Glacier, indicate ice-free conditions around 14-11.3 ka BP (Kelly et al., 2006; Wirsig et al., 2016). The emplacement of the subaquatic moraine complex of the Aare Glacier must have occurred between these age constraints, implying high sedimentation rates in the lake basin

    A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction

    Get PDF
    Abstract Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing

    Exploring planets and asteroids with 6DoF sensors: Utopia and realism

    Get PDF
    A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors

    In-situ regolith seismic velocity measurement at the InSight landing site on Mars

    Get PDF
    InSight's seismometer package SEIS was placed on the surface of Mars at about 1.2 m distance from the thermal properties instrument HP3 that includes a self-hammering probe. Recording the hammering noise with SEIS provided a unique opportunity to estimate the seismic wave velocities of the shallow regolith at the landing site. However, the value of studying the seismic signals of the hammering was only realised after critical hardware decisions were already taken. Furthermore, the design and nominal operation of both SEIS and HP3 are non-ideal for such high-resolution seismic measurements. Therefore, a series of adaptations had to be implemented to operate the self-hammering probe as a controlled seismic source and SEIS as a high-frequency seismic receiver including the design of a high-precision timing and an innovative high-frequency sampling workflow. By interpreting the first-arriving seismic waves as a P-wave and identifying first-arriving S-waves by polarisation analysis, we determined effective P- and S-wave velocities of vP = 114+43-20 m/s and vS = 60+11-7 m/s, respectively, from around 2,000 hammer stroke recordings. These velocities likely represent bulk estimates for the uppermost several 10's of cm of regolith. An analysis of the P-wave incidence angles provided an independent vP/vS ratio estimate of 1.84+0.89-0.35 that compares well with the traveltime based estimate of 1.92+0.52-0.28. The low seismic velocities are consistent with those observed for low-density unconsolidated sands and are in agreement with estimates obtained by other methods

    The Galperin source: A novel efficient multicomponent seismic source

    No full text
    ISSN:0016-8033ISSN:1942-215

    Near-surface three-dimensional multicomponent source and receiver S-wave survey in the Tannwald Basin, Germany: Acquisition and data processing

    No full text
    Shallow 3-D reflection seismic surveys using S-waves have rarely been carried out, even though S-waves can provide higher resolution subsurface images than P-waves. We conducted a 3-D near-surface multicomponent source and receiver survey in Quaternary sediments. We employed a small electrodynamic seismic source with a horizontal shaking unit operated in two orientations. Three-component geophones in an orthogonal layout covering an area of 117×99 m2 were used for recording. Changes in weather and ground conditions, including freezing and thawing during acquisition, directly influenced the data quality and resulted in discernible relative time shifts in the data. Our seismic processing flow included a four-component rotation of the data from the Cartesian acquisition geometry into the ‘natural’ coordinate frame to orient sources and receivers in radial or transverse orientation to separate different S-wave polarizations. The rotation increased the signal strength and helped, for example, to improve the quality of the images of the basin base. The irregular offset distribution in the common midpoint gathers impedes filtering to suppress surface waves in the f–k domain. We, therefore, applied a common-reflection surface processing flow. After regularization, we could better remove the energy of the surface waves. Both stacked 3-D S-wave volumes of vertical and horizontal polarizations provide images of the Quaternary overdeepened Tannwald Basin that was partly known from previous P- and S-wave 2-D surveys. Compared to a P-wave profile adjacent to the volume, however, the S-wave volumes provide higher resolution images of the basin base and internal structure. The basin base is well mapped in three dimensions and shows undulations that were not obvious from the P-wave data. Comparing the S-wave volumes of different polarizations, we find only minor differences in the stacks and interpretations.ISSN:1569-4445ISSN:1873-060

    Monitoring lake ice with acoustic sensors

    No full text
    Monitoring of the thickness and elastic parameters of floating ice on lakes and the sea is of interest in understanding the climate change impact on Alpine and Arctic environments, assessing ice safety for recreational and engineering purposes, studying ice shelves as well as exploring possibilities for the future exploration of the icy crusts of ocean worlds in our solar system. A multitude of geophysical methods exist today to monitor sea and lake ice thickness as well as elastic parameters. Mostly, seismic and radar measurements are used. Both methods have in common that they come with significant logistical effort and expensive equipment. In this study, we present a novel low cost approach using acoustic sensors for ice monitoring. We explored the possibility of using microphones deployed on frozen lakes in the Swiss Alps to monitor the lake ice-thickness using acoustic signals originating from frequently occurring ice quakes. Data were obtained during a three-month-long field campaign at Lake St. Moritz in Switzerland in winter 2021/2022. Three microphone stations were placed on the lake in addition to five conventional seismometers. These seismometers were used to compare the acoustic signals with the seismic ice quake recordings. Additionally, also active-source experiments were conducted using hammer strokes as source, which were used to constrain elastic parameters of the ice. The acoustic recordings of ice quakes allowed us to exploit the unique characteristics of so-called air-coupled waves to determine time-dependent ice thickness curves of Lake St. Moritz for winter 2021/2022 using acoustic data only. Furthermore, the acoustic data allowed us to gain new insights into the ice/air coupling of seismic waves in ice
    • 

    corecore