618 research outputs found

    Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Full text link
    We investigate the scale-locality of subgrid-scale (SGS) energy flux and inter-band energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial-range. Inter-band energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of ``local transfer by nonlocal triads,'' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all {\it individual} wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial-range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, non-local triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's ALHDIA and TFM closures. We support our results with numerical data from a 5123512^3 pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We conclude that the sharp spectral filter has a firm theoretical basis for use in large-eddy simulation (LES) modeling of turbulent flows.Comment: 42 pages, 9 figure

    A quantum search for zeros of polynomials

    Get PDF
    A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved

    Multiplication and Composition in Weighted Modulation Spaces

    Full text link
    We study the existence of the product of two weighted modulation spaces. For this purpose we discuss two different strategies. The more simple one allows transparent proofs in various situations. However, our second method allows a closer look onto associated norm inequalities under restrictions in the Fourier image. This will give us the opportunity to treat the boundedness of composition operators.Comment: 49 page

    Characterization of chemical bonding in low-k dielectric materialsfor interconnect isolation: a xas and eels study

    Get PDF
    The use of low dielectric constant materials in the on-chipinterconnect process reduces interconnect delay, power dissipation andcrosstalk noise. To achieve the requirements of the ITRS for 2007-2009minimal sidewall damage from etch, ash or cleans is required. In chemicalvapor deposited (CVD) organo-silicate glass (OSG) which are used asintermetal dielectric (IMD) materials the substitution of oxygen in SiO2by methyl groups (-CH3) reduces the permittivity significantly (from 4.0in SiO2 to 2.6-3.3 in the OSG), since the electronic polarizability islower for Si-C bonds than for Si-O bonds. However, plasma processing forresist stripping, trench etching and post-etch cleaning removes C and Hcontaining molecular groups from the near-surface layer of OSG.Therefore, compositional analysis and chemical bonding characterizationof structured IMD films with nanometer resolution is necessary forprocess optimization. OSG thin films as-deposited and after plasmatreatment are studied using X-ray absorption spectroscopy (XAS) andelectron energy loss spectroscopy (EELS). In both techniques, the finestructure near the C1s absorption or energy loss edge, respectively,allows to identify C-H, C-C, and C-O bonds. This gives the opportunity todifferentiate between individual low-k materials and their modifications.The O1s signal is less selective to individual bonds. XAS spectra havebeen recorded for non-patterned films and EELS spectra for patternedstructures. The chemical bonding is compared for as-deposited andplasma-treated low-k materials. The Fluorescence Yield (FY) and the TotalElectron Yield (TEY) recorded while XAS measurement are compared.Examination of the C 1s near-edge structures reveal a modified bonding ofthe remaining C atoms in the plasma-treated sample regions

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Mixture Risk Assessment of Complex Real-Life Mixtures—The PANORAMIX Project

    Get PDF
    Humans are involuntarily exposed to hundreds of chemicals that either contaminate our environment and food or are added intentionally to our daily products. These complex mixtures of chemicals may pose a risk to human health. One of the goals of the European Union’s Green Deal and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical mixture risk assessment by providing scientific grounds that support the implementation of adequate regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising ‘real-life’ chemical mixtures and determining to what extent they are transferred from the environment to humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals extracted from humans using integrated chemical profiling (suspect screening) together with effect-directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern for children’s development; and (4) developing a web-based, ready-to-use interface that integrates hazard and exposure data to enable component-based mixture risk estimation. These concepts form the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk assessment of chemicals.Horizon 2020 research and innovation programme, the Green Deal project PANORAMIX Grant Agreement No. 10103663

    Anisotropic Singular Integrals in Product Spaces

    Full text link
    Let AiA_i for i=1,2i=1, 2 be an expansive dilation, respectively, on Rn{\mathbb R}^n and Rm{\mathbb R}^m and A(A1,A2)\vec A\equiv(A_1, A_2). Denote by {\mathcal A}_\infty(\rnm; \vec A) the class of Muckenhoupt weights associated with A\vec A. The authors introduce a class of anisotropic singular integrals on Rn×Rm\mathbb R^n\times\mathbb R^m, whose kernels are adapted to A\vec A in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on Lwq(Rn×Rm)L^q_w(\mathbb R^n\times\mathbb R^m) with q(1,)q\in(1, \infty) and wAq(Rn×Rm;A)w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A) or on Hwp(Rn×Rm;A)H^p_w(\mathbb R^n\times\mathbb R^m; \vec A) with p(0,1]p\in(0, 1] and wA(Rn×Rm;A)w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A). These results are also new even when w=1w=1.Comment: Sci. China Math., to appea
    corecore