64 research outputs found

    Quantum J1J_1--J2J_2 antiferromagnet on the stacked square lattice: Influence of the interlayer coupling on the ground-state magnetic ordering

    Full text link
    Using the coupled-cluster method (CCM) and the rotation-invariant Green's function method (RGM), we study the influence of the interlayer coupling J⊥J_\perp on the magnetic ordering in the ground state of the spin-1/2 J1J_1-J2J_2 frustrated Heisenberg antiferromagnet (J1J_1-J2J_2 model) on the stacked square lattice. In agreement with known results for the J1J_1-J2J_2 model on the strictly two-dimensional square lattice (J⊥=0J_\perp=0) we find that the phases with magnetic long-range order at small J2<Jc1J_2< J_{c_1} and large J2>Jc2J_2> J_{c_2} are separated by a magnetically disordered (quantum paramagnetic) ground-state phase. Increasing the interlayer coupling J⊥>0J_\perp>0 the parameter region of this phase decreases, and, finally, the quantum paramagnetic phase disappears for quite small J⊥∼0.2...0.3J1J_\perp \sim 0.2 ... 0.3 J_1.Comment: 4 pages, 3 figure

    Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagome lattice

    Full text link
    We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagome lattice by using a spin-rotation-invariant Green's-function method. Since the pure two-dimensional kagome antiferromagnet is most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of kagome layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign and the strength of the interlayer coupling

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds

    Criteria for strong and weak random attractors

    Full text link
    The theory of random attractors has different notions of attraction, amongst them pullback attraction and weak attraction. We investigate necessary and sufficient conditions for the existence of pullback attractors as well as of weak attractors

    Linear independence of localized magnon states

    Full text link
    At the magnetic saturation field, certain frustrated lattices have a class of states known as "localized multi-magnon states" as exact ground states. The number of these states scales exponentially with the number NN of spins and hence they have a finite entropy also in the thermodynamic limit N→∞N\to \infty provided they are sufficiently linearly independent. In this article we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices including what we called the orthogonal type and the isolated type as well as the kagom\'{e}, the checkerboard and the star lattice we have proven linear independence of all localized multi-magnon states. On the other hand the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence.Comment: 23 pages, 6 figure

    A frustrated quantum spin-{\boldmath s} model on the Union Jack lattice with spins {\boldmath s>1/2}

    Full text link
    The zero-temperature phase diagrams of a two-dimensional frustrated quantum antiferromagnetic system, namely the Union Jack model, are studied using the coupled cluster method (CCM) for the two cases when the lattice spins have spin quantum number s=1s=1 and s=3/2s=3/2. The system is defined on a square lattice and the spins interact via isotropic Heisenberg interactions such that all nearest-neighbour (NN) exchange bonds are present with identical strength J1>0J_{1}>0, and only half of the next-nearest-neighbour (NNN) exchange bonds are present with identical strength J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0. The bonds are arranged such that on the 2×22 \times 2 unit cell they form the pattern of the Union Jack flag. Clearly, the NN bonds by themselves (viz., with J2=0J_{2}=0) produce an antiferromagnetic N\'{e}el-ordered phase, but as the relative strength κ\kappa of the frustrating NNN bonds is increased a phase transition occurs in the classical case (s→∞s \rightarrow \infty) at κccl=0.5\kappa^{\rm cl}_{c}=0.5 to a canted ferrimagnetic phase. In the quantum cases considered here we also find strong evidence for a corresponding phase transition between a N\'{e}el-ordered phase and a quantum canted ferrimagnetic phase at a critical coupling κc1=0.580±0.015\kappa_{c_{1}}=0.580 \pm 0.015 for s=1s=1 and κc1=0.545±0.015\kappa_{c_{1}}=0.545 \pm 0.015 for s=3/2s=3/2. In both cases the ground-state energy EE and its first derivative dE/dκdE/d\kappa seem continuous, thus providing a typical scenario of a second-order phase transition at κ=κc1\kappa=\kappa_{c_{1}}, although the order parameter for the transition (viz., the average ground-state on-site magnetization) does not go to zero there on either side of the transition.Comment: 1

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder

    Full text link
    This is a review of ground-state features of the s=1/2 Heisenberg antiferromagnet on two-dimensional lattices. A central issue is the interplay of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor bonds, geometric frustration) and quantum fluctuations and their impact on possible long-range order. This article presents a unified summary of all 11 two-dimensional uniform Archimedean lattices which include e.g. the square, triangular and kagome lattice. We find that the ground state of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered in most cases. However, the interplay of geometric frustration and quantum fluctuations gives rise to a quantum paramagnetic ground state without semi-classical long-range order on two lattices which are precisely those among the 11 uniform Archimedean lattices with a highly degenerate ground state in the classical limit. The first one is the famous kagome lattice where many low-lying singlet excitations are known to arise in the spin gap. The second lattice is called star lattice and has a clear gap to all excitations. Modification of certain bonds leads to quantum phase transitions which are also discussed briefly. Furthermore, we discuss the magnetization process of the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like plateaus and a magnetization jump just below the saturation field. As an illustration we discuss the two-dimensional Shastry-Sutherland model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review article. This version corrects two further typographic errors (three total with respect to the published version), see page 2 for detail

    Magnetic order in spin-1 and spin-3/2 interpolating square-triangle Heisenberg antiferromagnets

    Full text link
    Using the coupled cluster method we investigate spin-ss J1J_{1}-J2′J_{2}' Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, triangular lattice when the spin quantum number s=1s=1 or s=3/2s=3/2. With respect to a square-lattice geometry the model has antiferromagnetic (J1>0J_{1} > 0) bonds between nearest neighbours and competing (J2′>0J_{2}' > 0) bonds between next-nearest neighbours across only one of the diagonals of each square plaquette, the same one in each square. In a topologically equivalent triangular-lattice geometry, we have two types of nearest-neighbour bonds: namely the J2′≡κJ1J_{2}' \equiv \kappa J_{1} bonds along parallel chains and the J1J_{1} bonds producing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at κ=0\kappa = 0 and a set of decoupled chains at κ→∞\kappa \rightarrow \infty, with the isotropic HAF on the triangular lattice in between at κ=1\kappa = 1. For both the s=1s=1 and the s=3/2s=3/2 models we find a second-order quantum phase transition at κc=0.615±0.010\kappa_{c}=0.615 \pm 0.010 and κc=0.575±0.005\kappa_{c}=0.575 \pm 0.005 respectively, between a N\'{e}el antiferromagnetic state and a helical state. In both cases the ground-state energy EE and its first derivative dE/dκdE/d\kappa are continuous at κ=κc\kappa=\kappa_{c}, while the order parameter for the transition (viz., the average on-site magnetization) does not go to zero on either side of the transition. The transition at κ=κc\kappa = \kappa_{c} for both the s=1s=1 and s=3/2s=3/2 cases is analogous to that observed in our previous work for the s=1/2s=1/2 case at a value κc=0.80±0.01\kappa_{c}=0.80 \pm 0.01. However, for the higher spin values the transition is of continuous (second-order) type, as in the classical case, whereas for the s=1/2s=1/2 case it appears to be weakly first-order in nature (although a second-order transition could not be excluded).Comment: 17 pages, 8 figues (Figs. 2-7 have subfigs. (a)-(d)
    • …
    corecore