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Abstract In this paper, a classical Rayleigh–van der Pol equations with small noise
is considered. Using the asymptotic expansions of the Lyapunov exponents, invariant
measure and Lyapunov’s direct, we investigate the stochastic bifurcation, rotation
number, random limits cycle and attractor behavior of the random Rayleigh–van der
Pol Equations in detail.
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1 Introduction

Attractors play an important role in the study of the asymptotic behavior of dynam-
ical systems. There is an extensive literature dealing with attractors of deterministic
dynamical systems. For stochastic dynamical systems, however, comparably little
progress has been made by now. Random attractors were introduced originally by
Crauel and Flandoli [1], and Schmalfuß [2]. The deterministic version can be found
in Hale [3]. The concept of random attractors has been extended and generalized by
Arnold and Schmalfuß, Crauel, Flandoli, etc [4–13]. All references, except [6], are
concerned with the Navier–Stokes equation and the methods are tailor-made for the
infinite-dimensional case.
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On the other hand, stochastic bifurcation also play an important role in the study
of the asymptotic behavior of random dynamical systems. Stochastic bifurcation the-
ory studies the qualitative changes in parameterized families of random dynamical
systems. Since late 1970s much work has been done on the effects of noise on the
bifurcation [14–19]. However, stochastic bifurcation theory is still in its infancy [14].
There are two different approaches currently prevalent in the literature. One is the
phenomenological approach favored by physicists and engineers based on the qual-
itative changes of stationary measure, i.e., the stationary probability density of the
response. The other is the dynamical approach favored by mathematicians based on
the qualitative changes of stability of invariant measures and occurrence of new invari-
ant measures for random dynamical systems. Each approach has its advantages and the
two approaches can be regarded as complementary to each other [14,17]. Recently, the
stochastic Hopf bifurcation scenarios of a typical system, i.e., noisy Duffing–van der
Pol oscillator, was studied numerically and a deeper insight was given [16–18,20–25].

In this paper, we present a generally applicable technique which can be used to
prove the existence of stochastic Hopf bifurcation, rotation number, random limits
cycle and random attractors for the random Rayleigh–van der Pol equations as follow:

Ẍ = (α + σ2ξ2(ϑtω)) Ẋ −
(
βX2 + γ Ẋ2

)
Ẋ + (μ+ σ1ξ1(ϑtω)) X + σ3ξ3(ϑtω).

(1.1)

In the random case, if ξ1(ϑtω), ξ2(ϑtω), ξ3(ϑtω) are locally integrable, then Eq. (1.1)
is strictly forward complete, but not backward complete, for all parameter values
α, β, γ, μ, σ1, σ2, σ3.

The structure of the paper is as follows. In Sect. 2, random dynamical systems are
introduced, we give the definition and Lemma. In Sect. 3, we prove the existence of
stochastic Hopf bifurcation, random limits cycle and random attractors for the random
Rayleigh–van der Pol equations, respectively.

2 Preliminaries

Let {	,F ,P} be are probability space. On 	 we define a flow θ of maps θt : 	 → 	

with t ∈ R, i.e.

θ0 = id	 θt ◦ θs = θt+s s, t ∈ R,

(for brevity we write θt ◦ θs = θtθs) such that (t, ω) → θtω is F ⊗ B(R)-measurable
and θtP = P (measure preserving). In addition P is assumed to be ergodic w.r.t. the
flow θ. We call {	,F ,P, θt t∈R} or θ for short, a metric dynamical system.

Definition 2.1 [14] A function φ : T ×	× Rd → Rd is called a random dynamical
system (RDS) over the metric dynamical system θ , ifφ is B(T)⊗F⊗B(R�

),B(R�

)-
measurable and if the mappings φ(t, ω) := φ(t, ω, ·) : Rd → Rd form a cocycle
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over θ , i.e. for all ω ∈ 	

θ(0, ω) = idRd φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω), s, t ∈ T.

Further, φ is called continuous RDS, if φ(t, ω) is continuous for all ω ∈ 	, t ∈ T.

Remark 1 If 	 contains only one element (	 = {ω} and θtω = ω for all t ∈ R.) then
φ defines a deterministic flow.

Definition 2.2 [14] A random variable x : 	 → Rd is called a random fixed point (or
stationary solution) of a given RDS φ if φ(t, ω)x(ω) = x(θtω), for all ω ∈ 	, t ∈ T.

Definition 2.3 [12] A random compact set D(ω)maps	 into the space of nonempty
compact subset of R

n such that for all x ∈ R
n the mapping ω → d(x, D(ω)) is

measurable, where d(x, D(ω)) = inf y∈D(ω) ‖x − y‖.
A nonempty family D consisting of the random compact sets is called inclusion

closed system (IC-system), if it is maximal w.r.t. to inclusion (i.e. if D ∈ D and
D

′
(ω) ⊂ D(ω) for all ω ∈ 	 is a random compact set then also D

′ ∈ D).

Definition 2.4 [1] Let D be an IC-system. A random compact set B ∈ D is called
D-absorbing for an RDS φ, if for only ω ∈ 	 and D ∈ D there exist a τD(ω)

such that φ(t, θ−tω, D(θ−tω)) ⊂ B(ω), for all t > τD(ω), where φ(t, ω)A :=⋃
y∈A φ(t, ω, x), for all A ⊂ Rn .

Similarly we now can define a random attractor.

Definition 2.5 [14] Let D be an IC-system. A random compact set A ∈ D is called
D-attractor of an RDS φ, if

(i) A is invariant, i.e. φ(t, ω, A(ω)) = A(θtω), f or all t > 0, ω ∈ 	.
(ii) A is D-attracting, i.e. for all ω ∈ 	 and D ∈ D

lim
t→+∞ dist (φ(t, θ−tω, D(θ−tω)), B(ω)) = 0,

where dist (A, B) = supx∈A inf y∈B d(x, y) is the usual Hausdorff semi-metric.

Remark 2 If 	 = {ω} then the random attractors degenerate to usual deterministic
attractors.

Definition 2.6 [14]

(i) A random variable η : 	 → R
+ is called tempered if

lim
t→∞

log+ η(ϑtω)

t
= 0.

(ii) A non-empty random set A(ω) is called tempered if η(ω) := sup{‖x‖, x ∈ A(ω)}
is tempered.
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Definition 2.7 [14] Let T = R or Z(T is called ‘time’), and let ((	,F ,P), (ϑt )t∈T)

denote a metric dynamical system. That is, (	,F ,P) is a given probability space with
a flow (ϑt )t∈T on 	, which is measurable and measure preserving, i.e. (t, ω) 
→ ϑtω

is B(T)⊗ F ,F-measurable and ϑtP = P ∀t.
A local continuous (C∞) random dynamical system ϕ over the metric dynamical

system ((	,F ,P), (ϑt )t∈T) on �d is defined as a measurable mapping

ϕ : D → �d (t, ω, x) 
→ ϕ(t, ω, x)(=: (t, ω)x),

where D ∈ B(T)⊗ F ⊗ B(�d), such that

(i) ϕ(0, ω) = id�d and locally ϕ(t + s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω);
(ii) (t, x) 
→ ϕ(t, ω, x) is continuous; and

(iii) ϕ(t, ω) : x 
→ ϕ(t, ω, x) is a homeomorphism (C∞ diffeomorphism) between
the open sets D(t, ω) : {x |(t, ω, x) ∈ D} and R(t, ω)(= D(−t, ϑtω)).

Lemma 2.1 [1] Let φ be continuous RDS and let D be an IC-system, Moreover let
B ∈ D be an random compact set which is D-absorbing. Then there exist a unique
D-attractor A ∈ D for the cocycle φ given by

A(ω) = ⋂
t≥0

⋃
t≥τ

φ(τ, θ−τω), B(θ−τω).

If B(ω) is connected then so is A(ω).

Lemma 2.2 [14] Suppose η(ϑtω) is a stationary real-valued process. Whenever there
exists a δ > 0 such that e−δt |η(ϑtω)| → 0 as t → ∞, then this holds true for any
ε > 0. The conclusion is also valid for |η(ϑtω)|.

Lemma 2.3 [12] Suppose E(|η1|+|η2|) < ∞ and Eη1 > 0.Then random differential
equation

dψ(t, ω) = −(η1(ϑtω)ψ(t, ω)+ η2(ϑtω))dt

possesses the unique measurable stable stationary solution

r(ω) :=
0∫

−∞
e

s∫
0
η1(ϑuω)du

η2(ϑsω)ds,

i.e. ψ(t, ω)r(ω) = r(ϑtω) for all t.

Lemma 2.4 [12] Suppose V : R → R is surjective and r(ω) is measurable. Then
V −1([0, r(ω)]) and V −1([r(ω),∞)) are random sets. If, in addition, V (U ) ∈ B(R+)
for any open set U ⊂ R

d (e.g., if V is open), then V −1({r(ω)}) is a random set.
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Lemma 2.5 [14] Let ϕ be a continuous random dynamical system, and let U denote
a universe of sets.

Suppose there exists a compact set B ∈ U such that B is forward invariant
(ϕ(t, ω)B(ω) ⊂ B(ϑtω) for all t ≥ 0); B absorbs any set D ∈ U; and there exists a
neighborhood of B in U .

Then

A(ω) :=
⋂
n∈N

ϕ(n, ϑ−nω)B(ϑ−nω)

is the unique attractor for ϕ with domain of attraction D(A) containing U . In addition,

(i) if B(ω) is measurable, then so is A(ω) and thus A is a random attractor;
(ii) if ω 
→ ϕ(t, ϑ−tω, x) is F0−∞−measurable and B(ω) is measurable with respect

to the past, F0−∞, then A(ω) is F0−∞-measurable too; and
(iii) if B(ω) is connected, then so is A(ω).

3 Random bifurcation and attractor

In this section, we mainly consider the stochastic Hopf bifurcation, rotation number,
random limits cycle and attractor for random Rayleigh–van der Pol equations.

Theorem 3.1 Assumptionσ3 = 0, ξ1(ϑtω) = ξ2(ϑtω) = ξ(ϑtω). Then the Rayleigh–
van der Pol Eq. (1.1) undergoes a Hopf bifurcation, thus a random limit cycle occurs
in the stochastic system (1.1).

Proof Step 1: Let σ3 = 0, ξ1(ϑtω) = ξ2(ϑtω) = ξ(ϑtω), then Eq. (1.1) become

ẋ =
(

0 1
μ α

)
x +

(
0

−βx2
1 x2 − γ x3

2

)
+ ξ(ϑtω)

(
0 0
σ1 σ2

)
x (3.1)

The linearized RDS Dϕ is generated by the linearization of the Eq. (3.1), namely the
real noise case by

υ̇ =
(

0 1
μ α

)
υ +

(
0 0
−2βx1x2 −3γ x2

2

)
υ + ξ(ϑtω)

(
0 0
α1 α3

)
υ. (3.2)

For any invariant measure ν, the trace formula gives λ1(ν) + λ2(ν) = α − 3γEνx2
2 .

In particular, for ν = δ0 we obtain λ1(ν)+ λ2(ν) = α.

We also need the eigenvalues of the linearization of the deterministic system σ1 =
σ2 = 0 at x = 0,

υ̇ =
(

0 1
μ α

)
υ (3.3)
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which are

λ1,2 = α

2
±

√
α

4
+ μ.

For α4 + μ > 0, we have two real eigenvalue, while for α4 + μ < 0 we have a pair of
complex-conjugate eigenvalue

λ1,2 = α

2
± iωd , ωd :=

√
α

4
+ μ,

where ωd represents the “damped eigenfrequency” of the linear system

Ẍ − α Ẋ − μX = 0.

It is a general observation that noise splits deterministic multiplicities of eigenvalues.
For α2 < −4μ (which we assume) and σ1 = σ2 = 0, the deterministic linear system
has two complex-conjugate eigenvalues α2 ±ωd ,which amounts to just one Lyapunov
exponent λ1(0, α) = α/2 with multiplicity 2. For σ1 �= 0 and σ2 �= 0, however, the
linearized SDE

υ̇ =
(

0 1
μ α

)
υ + ξ(ϑtω)

(
0 0
α1 α3

)
υ (3.4)

has two different simple Lypunov exponents λi (μ, α) which satisfy λ1(μ, α) +
λ2(μ, α) = α. For small σ1, σ2 we can use the asymptotic expansion given by Par-
doux and Wihstutz [26] and others, namely when σ1 → 0, σ2 → 0, then Lyapunov
exponent of (3.4)

λ1,2 = α

2
± σ 2

1 + σ 2
2

8ω2
d

S(2ωd)+ O
(

max{σ 4
1 + σ 4

2 }
)
, (3.5)

where S(·) is the spectral density of ξ(ϑtω), for the white noise case where S(u) ≡ 1.
Furthermore, the rotation number expands as

ρ(μ, α) = ωd − c(σ 2
1 + σ 2

2 )

8ω2
d

T (2ωd)+ O
(

max{σ 4
1 + σ 4

2 }
)
, (3.6)

where T (·) is the sine spectral density of ξ(ϑtω).
Consequently, at the deterministic Hopf bifurcation point α = 0 we have for the

real noise case, neglecting O
(
max{σ 4

1 + σ 4
2 }) term,

λ2(σ1, σ2, 0) = −σ
2
1 + σ 2

2

8ω2
d

S(2ωd) < 0 < λ1(σ1, σ2, 0) = σ 2
1 + σ 2

2

8ω2
d

S(2ωd),
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i.e. at α = 0 the top exponent has already cross 0 and is positive. Then the Rayleigh–
van der Pol Eq. (1.1) undergoes Hopf bifurcation.

Step 2: It follows from (3.5) that the top Lyapunov exponent changes sign at

αD1 = σ 2
1 +σ 2

2
4μ S(2ωd) + O

(
max{σ 4

1 + σ 4
2 }) < 0 and the second Lyapunov exponent

changes sign at αD2 = −σ 2
1 +σ 2

2
4μ S(2ωd)+ O

(
max{σ 4

1 + σ 4
2 }) > 0.

For α < αD1 , δ0 is stable, it is the unique invariant measure, and Aα = {0} is the
attractor of the RDS ϕα in R

2.

We have a first bifurcation from δ0 at αD1 = α < 0 of a stable ergodic measure
ν1(μ, α)ω = 1

2

(
δx1(ω) + δ−x1(ω)

)
, which is a convex combination of two Dirac mea-

sure, sitting on the two “boundary points” of the one-dimensional unstable manifold
of x = 0, which is a saddle point. This situation persists for α ∈ (βD1 , αD2). As
shown above, αP = 0 ∈ (αD1, αD2), ν

1 undergoes a P–bifurcation. δ0 and ν1 are both
Markov measure. Hence ρ = Eν1 solves the Fokker–Planck equation. The attractor
Aα in (the universe of tempered sets of) R

2 is the closure of the unstable manifold of
x = 0, the two “boundary points” supporting the measure ν1. In the punctured plane
R

2 \ {0}, the attractor A0
α (in the universe of simply connected tempered sets) consist

of the two-point set suppν1.

At α = βD2 , we have a second bifurcation from δ0 of a measure ν2(μ, α)ω =
1
2 (δx2(ω)+ δ−x2(ω)), which is again a convex combination of two Dirac measure. ν2 is
a saddle point, i.e. has a positive and negative Lyapuove exponent, while δ0 has two
positive exponent.

For α > αD2 , the stable measure ν1 is supported by the “boundary” of the unstable
manifold of ν2. The closure of this unstable manifold is an invariant “circle” around
x = 0 (“random limit cycle”) and supports both measures ν1 and ν2. On this “circle”,
we have hyperbolic dynamics (ν1 is attracting and ν2 is repelling), in contrast to
the deterministic case, where the dynamics on the limit cycle is just rotation, and
the invariant measure is unique. The interior of the “circle” is the two-dimensional
unstable manifold of 0. Its closure is the attractor A in R

2. It carries all three invariant
measures. In the punctured plane R

2 \ {0}, however, the attractor A0
α is the invariant

“circle” , on which we have two invariant measures, in particular, the unique Markov
measure ν1. Thus the Rayleigh–van der Pol Eq. (1.1) occurs a random limit cycle. ��
Theorem 3.2 When σ2 = 0. Let ξ1(ϑtω), ξ2(ϑtω) be ergodic real noise processes
with E(|ξ1(ϑtω)| + |ξ2(ϑtω)|) < ∞. Then Eq. (1.1) generates a local C∞ random
dynamical system which is global forwards in time. Moreover, ω 
→ ϕ(t, ϑ−tω, x) is
F0−t -measurable.

Proof the Rayleigh–van der Pol Eq. (1.1) as an equivalent two-dimensional system
of first order equation as follows:

{
ẋ = y,
ẏ = (μ+ σ1ξ1(ϑtω))x − γ y3 + αy − βx2 y + σ3ξ3(ϑtω).

(3.7)

Using the canonical representation (3.7), we prove existence and uniqueness is a
direct consequence of the deterministic theory and similarly for the continuity and
C∞ property, Amann [[27], Chap. II]. We prove that on any set [0, T]⊂ �n for
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arbitrarily fixed sample path of the noise and initial value the solution is bounded.
Since this estimate is independent of null-sets it follows that the solution is strictly
complete.

Fix T > 0, γ > 0, β > 0 and apply the chain rule to x2 + y2, This yields

x2 + y2 = x2
0 + y2

0 + 2

t∫

0

xy + (μ+ σ1ξ1(ϑtω))xy − γ y4 + αy2 − βx2 y2

+σ3ξ3(ϑtω)yds

≤ x2
0 + y2

0 +
t∫

0

[1 + |μ| + |σ1|ξ1(ϑtω)|](x2 + y2)+ |α|y2

+|σ3||ξ3(ϑtω)|(1 + y2)ds

≤ x2
0 + y2

0 +
t∫

0

|σ3||ξ3(ϑtω)|ds

+
t∫

0

[1 + |μ| + |α| + |σ1||ξ1(ϑtω)| + |σ3||ξ3(ϑtω)|](x2 + y2)ds.

By the local integrability of t 
→ |ξ1(ϑtω)| + |ξ2(ϑtω)| the Gronwall lemma applies.
Therefore, the solution exists up to time T . This holds true for each T ∈ N, conse-
quently the maximal forward solution satisfies τ(ω, x) = ∞. This result is indepen-
dent of null-sets and thus the solution is strictly complete. ��
Lemma 3.3 The random dynamical system generated by the the Rayleigh–van der
Pol equations, introduced in Theorem 3.2, has the additional properties

(i) D(t, ϑ−tω) = R
2 for all t ≥ 0;

(ii) R(t, ϑ−t ) ↓ E(ω) for t ↑ ∞.

D(t, ϑ−tω) is the domain and R(t, ϑ−tω) is the range of the mapping ϕ(t, ϑ−tω).

Proof Property (i) follows from Theorem 3.2, because ϕ(t, ω, x) is non-explosive for
any t , hence forω. (ii) follows from the definition of E(ω) and the fact R(t, ϑ−t ) = �2

for all t ≤ 0 (which is a direct consequence of Theorem 3.2 since R(t, ϑ−t ) =
D(t, ϑ−t ). The claimed inclusion R(t, ϑ−t ) ⊂ R(t, ϑ−t ) for 0 ≤ s ≤ t is implied by
Definition 2.7(i). ��
Theorem 3.4 Let ξ1(ϑtω), ξ2(ϑtω) be ergodic real noise processes with E(|ξ1(ϑtω)|
+|ξ2(ϑtω)|) < ∞, and assume without loss of generality that σ1 ≥ 0, σ2 = 0, σ3 ≥ 0.
Suppose

(i) σ1, σ3 are small enough to ensure that

δ := 1 − 11

2
σ1E|ξ1(ϑtω)| − 6σ3E|ξ3(ϑtω)| > 0.
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Then the random dynamical system generated by the Rayleigh–van der Pol Eq. (1.1)
possesses the unique parameter dependent tempered random attractor A with domain
of Attraction D(A) containing the universe of sets Cl(U), generated by

U;= {(D(ω))ω∈	|D(ω) ⊂ R
2 is a tempered random set}.

Moreover, the random attractor A is measurable with respect to the past, F0−∞.

Proof Step 1: Reduction to a one dimensional problem.
the Rayleigh–van der Pol Eq. (1.1) as an equivalent two-dimensional system of first

order equation as follows:

{
ẋ1 = x2 + αx1 − β

3 x3
1 ,

ẋ2 = (μ+ σ1ξ1(ϑtω))x1 − γ x3
2 + σ3ξ3(ϑtω))

(3.8)

where y(t) = x1(t), ẏ(t) = x2 + αx1 − β
3 x3

1 .

Define the Lyapunov function

V : R
2 → R

+, V (x1, x2) = 7

24
x4

2 + x2
1 − x1x2 + 3

4
x2

2 . (3.9)

For notational simplicity only we let ((x1t (ω), x2t (ω))) := ϕ(t, ω). Application of the
chain rule to Eq. (3.8) implies

dV (x1, x2)

dt
= 7

6
x3

2 ẋ2 + 2x1 ẋ1 − ẋ1x2 − ẋ2x1 + 3

2
ẋ2x2

= 7

6
x3

2

(
(μ+ σ1ξ1(ϑtω))x1 − γ x3

2 + σ3ξ2(ϑtω)
)

+ (2x1 − x2)

(
x2 + αx1 − β

3
x3

1

)

+
(

3

2
x2 − x1

)(
(μ+ σ1ξ1(ϑtω))x1 − γ x3

2 + σ3ξ3(ϑtω)
)

= −7γ

6
x6

2 − 3γ

2
x4

2 − 2β

3
x4

1 +
(
γ + 7μ

6

)
x3

2 x1 + β

3
x3

1 x2

+(2α − μ)x2
1 − x2

2 +
(

2 − α + 3μ

2

)
x1x2

+
(

7

6
x1x3

2 − x2
1 + 3

2
x1x2

)
σ1ξ1(ϑtω)

+
(

7

6
x3

2 + 3

2
x2 − x1

)
σ3ξ3(ϑtω). (3.10)
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The stochastic terms satisfy

∣∣∣∣
7

6
x1x3

2 − x2
1 + 3

2
x1x2

∣∣∣∣ ≤
∣∣∣∣
7

6
x1x3

2

∣∣∣∣ +
∣∣∣∣−x2

1 + 3

2
x1x2

∣∣∣∣

≤ 7

12
(x2

1 + x6
2)+ 7

4
x2

1 + 3

4
x2

2 ≤ 11

2
V (x1, x2),

∣∣∣∣
7

6
x3

2 + 3

2
x2 − x1

∣∣∣∣ ≤
∣∣∣∣
7

6
x3

2

∣∣∣∣ +
∣∣∣∣
3

2
x2 − x1

∣∣∣∣

≤ 7

24
(4 + x6

2)+ x2
1 + 3

2
x2

2 + 5

2
≤ 6V (x1, x2)+ 11

3
.

Therefore, we obtain

dV (x1, x2)

dt
= −V (x1, x2)+ R(x1, x2)

+σ1
11

2
|ξ1(ϑtω)| V (x1, x2)+

(
6V (x1, x2)+ 11

3

)
σ3 |ξ3(ϑtω)| ,

(3.11)

where

−7γ

6
x6

2 − 36γ − 7

24
x4

2 − 2β

3
x4

1 + +6γ + 7μ

6
x3

2 x1 + β

3
x3

1 x2

+(2α − μ+ 1)x2
1 − 1

4
x2

2

(
1 − α + 3μ

2

)
x1x2.

Note that R(x1, x2) ≤ d(α, β, γ, μ) =: d, where c is a positive constant independent
of x1 and x2. Let

ξ(ϑtω) := σ1
11

2
|ξ1(ϑtω)| + 6σ3 |ξ3(ϑtω)| , ξ̃ (ϑtω) := σ3

11

3
|ξ3(ϑtω)| .

To this end we obtain the differential inequality, ψ(t, ω) = (x1(ω), x2(ω)),

dV (ψ(t, ω))

dt
≤ (−1 + ξ(ϑtω)) V (ψ(t, ω))+ d + ξ̃ (ϑtω). (3.12)

Step 2: Analyzing the one-dimensional problem.
Lemma 2.3 implies that the associated random differential equation possesses the

dominating solution ψ, i.e.

V (ϕ(t, ω, (x1, x2))) ≤ ψ(t, ω, V (x1, x2)), (3.13)
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and ψ possesses the unique measurable stationary stable solution

r(ω) :=
0∫

−∞
e

s−
s∫

0
ξ1(ϑuω)du (

d + ξ̃ (ϑsω)
)

ds. (3.14)

r(ω) is called “stationary solution”, because ψ(t, ω)r(ω) = r(ϑtω) for all t. In par-
ticular, r(ω) and (ϑtω) have the same distribution for all t.

One has ψ(t, ϑ−tω)x(ϑ−tω) → r(ω) as t → ∞ for any initial value x(ω) ∈ R
+

such that e−δt x(ϑ−tω) → 0. Thus we may define the universe of sets

U1 := {(I (ω))ω∈	|I (ω) ⊂ R
+ is a tempered random set}.

By definition of the universe U1 the random variable η1(ω) := sup{x |x ∈ I (ω)}
satisfies limt→∞ log+ η1(ϑtω)/t = 0. Thus, we obtain the needed condition
limt→∞ e−δtη1(ϑ−tω) = 0.

U1 is closed under inclusion and contains in particular any deterministic point
{x} ⊂ R

+, i.e. 	× {x} ∈ U1.

The random set [0, (1+ε)r(ω)] (ε > 0 is arbitrarily fixed) is forward invariant and
absorbing for ψ(t, ω) with respect to the universe U1.

The forward invariance can be seen as follows. Since r(ω) ≥ 0, ψ(t, ω, 0) ≥ 0 (by
non-negativity of V ), and x < y ⇒ ψ(t, ω, x) < ψ(t, ω, y), it suffices to show that

ψ(t, ϑ−tω, (1 + ε)r(ϑ−tω)) ≤ (1 + ε)r(ω).

By Lemma 2.3 the left-hand side is equal to

e
−t+

t∫
0
ξ1(ϑs−tω)ds

⎛
⎝(1 + ε)r(ϑ−tω)+

t∫

0

e
s−

s∫
0
ξ(ϑu−tω)du (

d + ξ̃ (ϑs−tω)
)

ds

⎞
⎠ .

Since d + ξ̃ (ω) ≥ 0 (which is essential) this quantity is bounded by

e
−t+

t∫
0
ξ1(ϑs−tω)ds

(1 + ε)

t∫

0

e
s−

s∫
0
ξ(ϑu−tω)du (

d + ξ̃ (ϑs−tω)
)

ds

(1 + ε)

t∫

0

e
s−t−

s−t∫
0
ξ(ϑuω)du (

d + ξ̃ (ϑs−tω)
)

ds.

Substituting v = s − t we obtain that this term is equal to (1 + ε)r(ω).
The absorption property follows immediately from the definition of U1. Notice,

[0, r(ω)] is attracting but not absorbing.
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Finally, note that [0, (1 + ε)r(ω)] is an element of U1. This holds true because

e−δt r(ϑ−tω) → 0 as t → ∞

and hence, by stationarity, e−εt r(ϑ−tω) → 0 for any ε > 0, see Lemma 2.2
Step 3: “Lift” to the original coordinates.
Define

B(ω) := V −1([0, (1 + ε)r(ω)]) ⊂ R2,with an arbitrarily fixed ε > 0.

This a non-empty compact set by the surjectivity and continuity of V, and the fact that
pre-images of bounded sets are bounded under V.

The family (B(ω))ω∈	 of compact sets satisfies the assumption of Lemma 2.5.
To prove this we have to show (a) measurability; (b) forward invariance, i.e.
ϕ(t, ϑ−tω)B(ϑ−tω) ⊂ B(ω) for any t ≥ 0; (c) absorption of any set D ∈ U , where
the universe of sets U is defined in the Lemma to be proved; and (d) existence of a
neighborhood of B in U .

V is surjective and therefore measurability follows from Lemma 2.4.
The forward invariance can be seen as follows. We obtain

ψ(t, ϑ−tω)[0, (1 + ε)r(ϑ−tω)] ⊂ [0, (1 + ε)r(ω)]
⇔ ψ(t, ϑ−tω)V (B(ϑ−tω)) ⊂ V (B(ω))

⇒ V (ϕ(t, ϑ−tω)B(ϑ−tω)) ⊂ V (B(ω))

where we have used surjiectivity of V , the domination property (3.13), and nonnega-
tivity of V . Now (b) follows resdly

ϕ(t, ϑ−tω)B(ϑ−tω) ⊂ V −1(V (ϕ(t, ϑ−tω)B(ϑ−tω))) ⊂ V −1(V (B(ω))).

Property (c) is a consequence of the domination property of ψ, the fact that
ψ(t, ϑ−tω)x(ϑ−tω) → r(ω) when t → ∞ for x(·) ∈ U1, and the surjectivity of
V.

For any D ∈ U it is V (D) ∈ U1. This follows from the fact that x4 + y2 ≤
‖(x, y)‖4 + 1, V (x, y) ≤ x4 + y2 + const., and the random variable sup{‖(x, y)‖4 +
const.|(x, y) ∈ D(ω)} grows sub-exponentially fast by the definition of U .

Since D ∈ U ⇒ V (D) ∈ U1 and [0, (1+)r(ω)] absorbs any set in U1 there exists
a t (ω, V (D))(=: t (ω, D)) such that for any t ≥ t (ω, D)

V (ϕ(t, ϑ−tω)D(ϑ−tω)) ⊂ ϕ(t, ϑ−tω)V (D(ϑ−tω)) ⊂ [0, (1+)r(ω)] = V (B(ω)).

As in the proof of property (b), we take pre-images with respect to V −1 of the first
and the last term. This gives (c).

Finally, property (d) follows from the fact that there exists a positive random vari-
able d(ω) such that B(ω) ⊂ B0(d(ω)) := {x ∈ R|‖x‖ ≤ d(ω)} ∈ U . Therefore,
(B0(ad(ω)))ω∈	 for any a > 0, which is a neighborhood of B for an arbitrarity fixed
a > 1.
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Application of Lemma 2.5 finishes the proof. Note that the attractor A(ω) is mea-
surable with respect to the past, F0−∞, because B(ω) has this measurability by con-
struction. ��
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