37 research outputs found

    Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common bean (<it>Phaseolus vulgaris </it>L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 × G19833.</p> <p>Results</p> <p>We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones.</p> <p>Conclusions</p> <p>Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.</p

    Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Soybean, <it>Glycine max </it>(L.) Merr., is a well documented paleopolyploid. What remains relatively under characterized is the level of sequence identity in retained homeologous regions of the genome. Recently, the Department of Energy Joint Genome Institute and United States Department of Agriculture jointly announced the sequencing of the soybean genome. One of the initial concerns is to what extent sequence identity in homeologous regions would have on whole genome shotgun sequence assembly.</p> <p>Results</p> <p>Seventeen BACs representing ~2.03 Mb were sequenced as representative potential homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95% sequence identity resolve into their respective homeologous sequences. Potential assembly errors were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-DOE sequence traces reveals some new soybean-specific repeat sequences.</p> <p>Conclusion</p> <p>This analysis investigated both the structure of the paleopolyploid soybean genome and the potential effects retained homeology will have on assembling the whole genome shotgun sequence. Based upon these results, homeologous regions similar to those characterized here will not cause major assembly issues.</p

    Epithelial laminin α5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung

    Get PDF
    AbstractLaminin α5 is prominent in the basement membrane of alveolar walls, airways, and pleura in developing and adult lung. Targeted deletion of laminin α5 in mice causes developmental defects in multiple organs, but embryonic lethality has precluded examination of the latter stages of lung development. To identify roles for laminin α5 in lung development, we have generated an inducible lung epithelial cell-specific Lama5 null (SP-CLama5fl/−) mouse through use of the Cre/loxP system, the human surfactant protein C promoter, and the reverse tetracycline transactivator. SP-CLama5fl/− embryos exposed to doxycycline from E6.5 died a few hours after birth. Compared to control littermates, SP-CLama5fl/− lungs had dilated, enlarged distal airspaces, but basement membrane ultrastructure was preserved. Distal epithelial cell differentiation was perturbed, with a marked reduction of alveolar type II cells and a virtual absence of type I cells. Cell proliferation was reduced and apoptosis was increased. Capillary density was diminished, and this was associated with a decrease in total lung VEGF production. Overall, these findings indicate that epithelial laminin α5, independent of its structural function, is necessary for murine lung development, and suggest a role for laminin α5 in signaling pathways that promote alveolar epithelial cell differentiation and VEGF expression

    A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Get PDF
    Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes

    Population Genomics Related to Adaptation in Elite Oat Germplasm

    Get PDF
    Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype–phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24

    Sequence Conservation of Homeologous Bacterial Artificial Chromosomes and Transcription of Homeologous Genes in Soybean (Glycine max L. Merr.)

    No full text
    The paleopolyploid soybean genome was investigated by sequencing homeologous BAC clones anchored by duplicate N-hydroxycinnamoyl/benzoyltransferase (HCBT) genes. The homeologous BACs were genetically mapped to linkage groups C1 and C2. Annotation of the 173,747- and 98,760-bp BACs showed that gene conservation in both order and orientation is high between homeologous regions with only a single gene insertion/deletion and local tandem duplications differing between the regions. The nucleotide sequence conservation extends into intergenic regions as well, probably due to conserved regulatory sequences. Most of the homeologs appear to have a role in either transcription/DNA binding or cellular signaling, suggesting a potential preference for retention of duplicate genes with these functions. Reverse transcriptase–PCR analysis of homeologs showed that in the tissues sampled, most homeologs have not diverged greatly in their transcription profiles. However, four cases of changes in transcription were identified, primarily in the HCBT gene cluster. Because a mapped locus corresponds to a soybean cyst nematode (SCN) QTL, the potential role of HCBT genes in response to SCN is discussed. These results are the first sequenced-based analysis of homeologous BACs in soybean, a diploidized paleopolyploid
    corecore