136 research outputs found

    Attempting to distinguish between endogenous and contaminating cytokeratins in a corneal proteomic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The observation of cytokeratins (CK's) in mass spectrometry based studies raises the question of whether the identified CK is a true endogenous protein from the sample or simply represents a contaminant. This issue is especially important in proteomic studies of the corneal epithelium where several CK's have previously been reported to mark the stages of differentiation from corneal epithelial stem cell to the differentiated cell.</p> <p>Methods</p> <p>Here we describe a method to distinguish very likely endogenous from uncertain endogenous CK's in a mass spectrometry based proteomic study. In this study the CK identifications from 102 human corneal samples were compared with the number of human CK identifications found in 102 murine thymic lymphoma samples.</p> <p>Results</p> <p>It was anticipated that the CK's that were identified with a frequency of <5%, <it>i.e. </it>in less than one spot for every 20 spots analysed, are very likely to be endogenous and thereby represent a 'biologically significant' identification. CK's observed with a frequency >5% are uncertain endogenous since they may represent true endogenous CK's but the probability of contamination is high and therefore needs careful consideration. This was confirmed by comparison with a study of mouse samples where all identified human CK's are contaminants.</p> <p>Conclusions</p> <p>CK's 3, 4, 7, 8, 11, 12, 13, 15, 17, 18, 19, 20 and 23 are very likely to be endogenous proteins if identified in a corneal study, whilst CK's 1, 2e, 5, 6A, 9, 10, 14 and 16 may be endogenous although some are likely to be contaminants in a proteomic study. Further immunohistochemical analysis and a search of the current literature largely supported the distinction.</p

    Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne®), in the CAM model

    Get PDF
    The aim of the present study was to monitor photodynamic angioocclusion with verteporfin in capillaries. Details of this process were recorded under a microscope in real-time using a high-sensitivity video camera. A procedure was developed based on intravenous (i.v.) injection of a light-activated drug, Visudyne®, into the chorioallantoic membrane (CAM) of a 12-day-old chicken embryo. The effect of light activation was probed after 24 h by i.v. injection of a fluorescent dye (FITC dextran), and analysis of its fluorescence distribution. The angioocclusive effect was graded based on the size of the occluded vessels, and these results were compared with clinical observations. The time-resolved thrombus formation taking place in a fraction of the field of view was video recorded using a Peltier-cooled CCD camera. This vessel occlusion in the CAM model was reproducible and, in many ways, similar to that observed in the clinical use of verteporfin. The real-time video recording permitted the monitoring of platelet aggregation and revealed size-selective vascular closure as well as some degree of vasoconstriction. Platelets accumulated at intravascular junctions within seconds after verteporfin light activation, and capillaries were found to be closed 15 min later at the applied conditions. Larger-diameter vessels remained patent. Repetition of these data with a much more sensitive camera revealed occlusion of the treated area after 5 min with doses of verteporfin and light similar to those used clinically. Consequently, newly developed light-activated drugs can now be studied under clinically relevant conditions

    Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The corpus luteum (CL) is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr) on the microvascular endothelial cells (pCL-MVECs) of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p), and during pregnancy (P-p). Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested.</p> <p>Methods</p> <p>Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2). After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage.</p> <p>PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence) and hormonal treatment (P4 and E2) on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha.</p> <p>Results</p> <p>We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA) in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA). prostaglandin F2-alpha treatment failed to induce an apoptotic response in all the pCL-MVEC cultures.</p> <p>Conclusion</p> <p>Our data showing the presence of FPr on MVECs and the inability of prostaglandin F2-alpha to evoke an in vitro apoptotic response suggest that other molecules or mechanisms must be considered in order to explain the in vivo direct pro-apoptotic effect of prostaglandin F2-alpha at the endothelial level.</p

    DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation syndrome is a major risk factor for glaucoma in many populations throughout the world. Using a U.S. clinic-based case control sample with broad ethnic diversity, we show that three common SNPs in LOXL1 previously associated with pseudoexfoliation in Nordic populations are significantly associated with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.</p> <p>Methods</p> <p>Three LOXL1 SNPs were genotyped in a patient sample (206 pseudoexfoliation, 331 primary open angle glaucoma, and 88 controls) from the Glaucoma Consultation Service at the Massachusetts Eye and Ear Infirmary. The SNPs were evaluation for association with pseudeoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open angle glaucoma.</p> <p>Results</p> <p>The strongest association was found for the G allele of marker rs3825942 (G153D) with a frequency of 99% in pseudoexfoliation patients (with and without glaucoma) compared with 79% in controls (p = 1.6 × 10<sup>-15</sup>; OR = 20.93, 95%CI: 8.06, 54.39). The homozygous GG genotype is also associated with pseudoexfoliation when compared to controls (p = 1.2 × 10<sup>-12</sup>; OR = 23.57, 95%CI: 7.95, 69.85). None of the SNPs were significantly associated with primary open angle glaucoma.</p> <p>Conclusion</p> <p>The pseudoexfoliation syndrome is a common cause of glaucoma. These results indicate that the G153D LOXL1 variant is significantly associated with an increased risk of pseudoexfoliation and pseudoexfoliation glaucoma in an ethnically diverse patient population from the Northeastern United States. Given the high prevalence of pseudooexfoliation in this geographic region, these results also indicate that the G153D LOXL1 variant is a significant risk factor for adult-onset glaucoma in this clinic based population.</p

    Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma

    Get PDF
    Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork

    MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    Get PDF
    Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium.Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs.We found expression of miR-143/145 cluster in human corneal epithelium. Our results also showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8 targeting

    Basement membrane components are key players in specialized extracellular matrices

    Get PDF
    More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches

    Retinopathy associated with photodynamic therapy for treatment of idiopathic choroidal neovascularization

    No full text
    A case of retinopathy with retinal pigment epithelial alterations due to photodynamic therapy for the treatment of idiopathic choroidal neovascularization is reported. The possible mechanisms are discussed
    corecore