244 research outputs found

    Synthetic Philosophy

    Get PDF

    Women in Early Analytic Philosophy: Volume Introduction

    Get PDF
    Editor's Introduction to the special issue including papers about Susan Stebbing, Susanne Langer and Maria Kokoszyńska

    Optomechanically induced transparency

    Full text link
    Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically induced transparency (EIT), in which a control laser induces a narrow spectral transparency window for a weak probe laser beam. The concomitant rapid variation of the refractive index in this spectral window can give rise to dramatic reduction of the group velocity of a propagating pulse of probe light. Dynamic control of EIT via the control laser enables even a complete stop, that is, storage, of probe light pulses in the atomic medium. Here, we demonstrate optomechanically induced transparency (OMIT)--formally equivalent to EIT--in a cavity optomechanical system operating in the resolved sideband regime. A control laser tuned to the lower motional sideband of the cavity resonance induces a dipole-like interaction of optical and mechanical degrees of freedom. Under these conditions, the destructive interference of excitation pathways for an intracavity probe field gives rise to a window of transparency when a two-photon resonance condition is met. As a salient feature of EIT, the power of the control laser determines the width and depth of the probe transparency window. OMIT could therefore provide a new approach for delaying, slowing and storing light pulses in long-lived mechanical excitations of optomechanical systems, whose optical and mechanical properties can be tailored in almost arbitrary ways in the micro- and nano-optomechanical platforms developed to date

    Tunable pulse delay and advancement in a coupled nanomechanical resonator-superconducting microwave cavity system

    Full text link
    We theoretically study the transmission of a weak probe field under the influence of a strong pump field in a coupled nanomechanical resonator-superconducting microwave cavity system. Using the standard input-output theory, we find that both pulse delay (slow light effect) and advancement (fast light effect) of the probe field can appear in this coupled system provided that we choose the suitable detuning of the pump field from cavity resonance. The magnitude of the delay (advancement) can be tuned continuously by adjusting the power of the pump field. This technique demonstrates great potential in applications including microwave phase shifter and delay line.Comment: 12pages, 3 figure

    Cavity Enhanced Optical Vernier Spectroscopy, Broad Band, High Resolution, High Sensitivity

    Full text link
    A femtosecond frequency comb provides a vast number of equidistantly spaced narrow band laser modes that can be simultaneously tuned and frequency calibrated with 15 digits accuracy. Our Vernier spectrometer utilizes all of theses modes in a massively parallel manner to rapidly record both absorption and dispersion spectra with a sensitivity that is provided by a high finesse broad band optical resonator and a resolution that is only limited by the frequency comb line width while keeping the required setup simple.Comment: 11 pages, 3 figures, submitted to PR
    • …
    corecore