21 research outputs found

    Spatial probit models for multivariate ordinal data: computational efficiency and parameter identifiability

    Get PDF
    2013 Summer.Includes bibliographical references.The Colorado Natural Heritage Program (CNHP) at Colorado State University evaluates Colorado's rare and at-risk species and habitats and promotes conservation of biological resources. One of the goals of the program is to determine the condition of wetlands across the state of Colorado. The data collected are measurements, or metrics, representing landscape condition, biotic condition, hydrologic condition, and physiochemical condition in river basins statewide. The metrics differ in variable type, including binary, ordinal, count, and continuous response data. It is common practice to uniformly discretize the metrics into ordinal values and combine them using a weighted-average to obtain a univariate measure of wetland condition. The weights assigned to each metric are based on best professional judgement. The motivation of this work was to improve on the user-defined weights by developing a statistical model to estimate the weights using observed data. The challenges of creating a model that fulfills this requirement are many. First, the observed data are multivariate and consist of different variable types which we wish to preserve. Second, the multivariate response data are not independent across river basin because wetlands at close proximity are correlated. Third, we want the model to provide a univariate measure of wetland condition that can be compared across the state. Lastly, it is of interest to the ecologists to predict the univariate measure of wetland condition at unobserved locations requiring covariate information to be incorporated into the model. We propose a multivariate multilevel latent variable model to address these challenges. Latent continuous response variables are used to model the different types of response variables. An additional latent variable, or common factor, is used as a univariate measure of wetland condition. The mean of the common factor contains observable covariate data in order to predict at unobserved locations. The variance of the common factor is defined by a spatial covariance function to account for the dependence between wetlands. The majority of the metrics reported by the CNHP are ordinal. Therefore, our primary focus is modeling multivariate ordinal response data where binary data is a special case. Probit linear models and probit linear mixed models are examples of models for ordinal response data. Probit models are attractive in that they can be defined in terms of latent variables. Computational efficiency is a major issue when fitting multivariate latent variable models in a Bayesian framework using Markov chain Monte Carlo (MCMC). There is also a high computation cost for running MCMC when fitting geostatistical spatial models. Data augmentation and parameter expansion are both modeling techniques that can lead to optimal iterative sampling algorithms for MCMC. Data augmentation allows for simpler and more feasible simulation from a posterior distribution. Parameter expansion is a method for accelerating convergence of iterative sample algorithms and can enhance data augmentation algorithms. We propose data augmentation and parameter-expanded data augmentation algorithms for fitting MCMC to spatial probit models for binary and ordinal response data. Parameter identifiability is another challenge when fitting multivariate latent variable models due to the multivariate response data, number of parameters, unobserved latent variables, and spatial random effects. We investigate parameter identifiability for the common factor model for multivariate ordinal response data. We extend the common factor model to include covariates and spatial correlation so we can predict wetland condition at unobserved locations. The partial sill and range parameter of a spatial covariance function are difficult to estimate because they are near-nonidentifiable. We propose a new parameterization for the covariance function of the spatial probit model that leads to better mixing and faster convergence of the MCMC. Whereas our spatial probit model for ordinal response data follows the common factor model approach, there are other forms of the spatial probit model. We give a comprehensive comparison of two types of spatial probit models, which we refer to as the first-stage and second-stage spatial probit model. We discuss the implications of fitting each model and compare them in terms of their impact on parameter estimation and prediction at unobserved locations. We propose a new approximation for predicting ordinal response data that is both accurate and efficient. We apply the multivariate multilevel latent variable model to data collected in the North Platte and Rio Grande River Basins to evaluate wetland condition. We obtain statistically derived weights for each of the response metrics with confidence limits. Lastly, we predict the univariate measure of wetland condition at unobserved locations

    Impact of biopower generation on eastern US forests

    Get PDF
    Biopower, electricity generated from biomass, is a major source of renewable energy in the US. About ten percent of US non-hydro renewable electricity in 2020 was generated from biomass. Despite significant growth in woody biomass use for electricity in recent decades, a systematic assessment of associated impacts on forest resources is lacking. This study assessed associations between biopower generation, and selected timberland structure indicators and carbon stocks across 438 areas surrounding wood-using and coal-burning power plants in the Eastern US from 2005 to 2017. Timberland areas around plants generating biopower were associated with more live and standing-dead trees, and carbon in their respective stocks, than comparable areas of neighboring plants only burning coal. We also detected an inverse association between the number of biopower plants and number of live and dead trees, and respective carbon stocks. We discerned an upward temporal trajectory in carbon stocks within live trees with continued biopower generation. We found no significant differences related to the amount of MWh biopower generation within the analysis areas. Net impacts of biopower descriptors on timberland attributes point to a positive trend in selected ecological conditions and carbon balances. The upward temporal trend in carbon stocks with longer generation of wood-based biopower may point to a plausibly sustainable contribution to the decarbonization of the US electricity sector

    Identifying and characterizing extrapolation in multivariate response data

    Full text link
    Extrapolation is defined as making predictions beyond the range of the data used to estimate a statistical model. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused on univariate response data, but these methods are not directly applicable to multivariate response data, which are more and more common in ecological investigations. In this paper, we extend previous work that identified extrapolation by applying the predictive variance from the univariate setting to the multivariate case. We illustrate our approach through an analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we illustrate novel exploratory approaches for identifying regions of covariate space where extrapolation is more likely to occur using classification and regression trees.Comment: 28 pages, 2 supplementary files, 6 main figures, 2 supplementary figures, 2 supplementary table

    Asymmetric Biotic Interactions and Abiotic Niche Differences Revealed by a Dynamic Joint Species Distribution Model

    Get PDF
    A species’ distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co‐occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species’ abundance on other species in the community. Accounting for dependence among co‐occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions

    Spatio-temporal analysis of the extent of an extreme heat event

    Get PDF
    Evidence of global warming induced from the increasing concentration of greenhouse gases in the atmosphere suggests more frequent warm days and heat waves. The concept of an extreme heat event (EHE), defined locally based on exceedance of a suitable local threshold, enables us to capture the notion of a period of persistent extremely high temperatures. Modeling for extreme heat events is customarily implemented using time series of temperatures collected at a set of locations. Since spatial dependence is anticipated in the occurrence of EHE’s, a joint model for the time series, incorporating spatial dependence is needed. Recent work by Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092, 2021) develops a space-time model based on a point-referenced collection of temperature time series that enables the prediction of both the incidence and characteristics of EHE’s occurring at any location in a study region. The contribution here is to introduce a formal definition of the notion of the spatial extent of an extreme heat event and then to employ output from the Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092, 2021) modeling work to illustrate the notion. For a specified region and a given day, the definition takes the form of a block average of indicator functions over the region. Our risk assessment examines extents for the Comunidad Autónoma de Aragón in northeastern Spain. We calculate daily, seasonal and decadal averages of the extents for two subregions in this comunidad. We generalize our definition to capture extents of persistence of extreme heat and make comparisons across decades to reveal evidence of increasing extent over time

    Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification

    Full text link
    BACKGROUND: Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. RESULTS: We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. CONCLUSIONS: The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification. REVIEWERS: This article was reviewed by Junhyong Kim, Eugene Koonin, and Fyodor Kondrashov. For complete reports, see the Reviewers' reports section.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    corecore