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ABSTRACT

SPATIAL PROBIT MODELS FOR MULTIVARIATE ORDINAL DATA:

COMPUTATIONAL EFFICIENCY AND PARAMETER IDENTIFIABILITY

The Colorado Natural Heritage Program (CNHP) at Colorado State University evalu-

ates Colorado’s rare and at-risk species and habitats and promotes conservation of biological

resources. One of the goals of the program is to determine the condition of wetlands across

the state of Colorado. The data collected are measurements, or metrics, representing land-

scape condition, biotic condition, hydrologic condition, and physiochemical condition in river

basins statewide. The metrics differ in variable type, including binary, ordinal, count, and

continuous response data. It is common practice to uniformly discretize the metrics into

ordinal values and combine them using a weighted-average to obtain a univariate measure

of wetland condition. The weights assigned to each metric are based on best professional

judgement.

The motivation of this work was to improve on the user-defined weights by developing

a statistical model to estimate the weights using observed data. The challenges of creating

a model that fulfills this requirement are many. First, the observed data are multivariate

and consist of different variable types which we wish to preserve. Second, the multivariate

response data are not independent across river basin because wetlands at close proximity are

correlated. Third, we want the model to provide a univariate measure of wetland condition

that can be compared across the state. Lastly, it is of interest to the ecologists to predict

the univariate measure of wetland condition at unobserved locations requiring covariate

information to be incorporated into the model.

We propose a multivariate multilevel latent variable model to address these challenges.

Latent continuous response variables are used to model the different types of response vari-

ables. An additional latent variable, or common factor, is used as a univariate measure of
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wetland condition. The mean of the common factor contains observable covariate data in

order to predict at unobserved locations. The variance of the common factor is defined by a

spatial covariance function to account for the dependence between wetlands.

The majority of the metrics reported by the CNHP are ordinal. Therefore, our primary

focus is modeling multivariate ordinal response data where binary data is a special case.

Probit linear models and probit linear mixed models are examples of models for ordinal

response data. Probit models are attractive in that they can be defined in terms of latent

variables.

Computational efficiency is a major issue when fitting multivariate latent variable models

in a Bayesian framework using Markov chain Monte Carlo (MCMC). There is also a high

computation cost for running MCMC when fitting geostatistical spatial models. Data aug-

mentation and parameter expansion are both modeling techniques that can lead to optimal

iterative sampling algorithms for MCMC. Data augmentation allows for simpler and more

feasible simulation from a posterior distribution. Parameter expansion is a method for ac-

celerating convergence of iterative sample algorithms and can enhance data augmentation

algorithms. We propose data augmentation and parameter-expanded data augmentation

algorithms for fitting MCMC to spatial probit models for binary and ordinal response data.

Parameter identifiability is another challenge when fitting multivariate latent variable

models due to the multivariate response data, number of parameters, unobserved latent

variables, and spatial random effects. We investigate parameter identifiability for the com-

mon factor model for multivariate ordinal response data. We extend the common factor

model to include covariates and spatial correlation so we can predict wetland condition at

unobserved locations. The partial sill and range parameter of a spatial covariance function

are difficult to estimate because they are near-nonidentifiable. We propose a new parame-

terization for the covariance function of the spatial probit model that leads to better mixing

and faster convergence of the MCMC.
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Whereas our spatial probit model for ordinal response data follows the common factor

model approach, there are other forms of the spatial probit model. We give a comprehensive

comparison of two types of spatial probit models, which we refer to as the first-stage and

second-stage spatial probit model. We discuss the implications of fitting each model and

compare them in terms of their impact on parameter estimation and prediction at unobserved

locations. We propose a new approximation for predicting ordinal response data that is both

accurate and efficient.

We apply the multivariate multilevel latent variable model to data collected in the North

Platte and Rio Grande River Basins to evaluate wetland condition. We obtain statistically

derived weights for each of the response metrics with confidence limits. Lastly, we predict

the univariate measure of wetland condition at unobserved locations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for this work

One of the goals of the Colorado Natural Heritage Program (CNHP) is to evaluate the

condition of wetlands across the state of Colorado. Many different ecoregions are found in

Colorado, and wetland types vary between and within an ecoregion. Field ecologists have

spent countless hours collecting measurements, or metics, representing different ecological

categories of wetland condition in river basins statewide. These categories include landscape

condition, biotic condition, hydrologic condition, and physiochemical condition. The mea-

surements collected within each of these categories differ in variable type, including binary,

ordinal, count, and continuous response data. Many of the metrics are then converted to

an ordinal scale for comparison. It is common practice to combine the metrics within each

ecological category using a weighted average to get an estimate of each ecological category

at each observed location. Then, a second weighted average is computed combining the four

ecological categories to obtain an overall wetland condition score. The weights are assigned

in both weighted-average computation using best professional judgement.

Our goal was to improve on these user-defined weights by developing a statistical model

to estimate the weights using the observed data. There are many challenges in creating a

statistical model to meet the needs of the ecologists of the CNHP. First, the observed metrics,

or response data are multivariate and may consist of different variable types. Second, the

multivariate response data are not independent across wetland and river basin. That is,

often wetlands at close proximity within a river basin are correlated. Third, similar to

the overall wetland condition score, we want the model to provide a univariate measure of
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wetland condition that can be compared across the state. Lastly, it is of interest to the

ecologists to predict the univariate wetland condition value at unobserved locations. This

entails incorporating covariate information into the model.

We address these challenges in a few ways. First, we use latent variables to incorporate the

different types of response data. We represent each observed metric by a continuous latent

variable in order to create uniformity in the response variables across metric. We model the

univariate measure of wetland condition using a spatially correlated random effect in order

to account for dependence between wetland locations. In order to make predictions at new

locations, we assume the mean of the univariate measure of wetland condition to be a linear

combination of covariates that we are able to obtain over the entire spatial domain.

When fitting the proposed multivariate latent variable model with spatially correlated

random effects, we were met with further statistical challenges. Binary, count, and continuous

response data are common in the literature and fit within the generalized linear model (GLM)

framework. Ordinal data, however, is far less common and require careful consideration

when fitting statistical models. The measurements recorded by the CNHP field ecologists

for evaluating wetland condition are predominantly ordinal. Therefore, our primary focus in

this work is modeling multivariate ordinal response data where binary data is a special case.

Probit linear models are one type of model for binary or ordinal response data and will be

discussed in detail in Section 1.2.

Computational efficiency is a major issue when fitting multivariate latent variable models

in a Bayesian framework using Markov chain Monte Carlo (MCMC). For example, MCMC

can result in poor mixing of the threshold parameters when modeling ordinal data. There is

also a high computation cost for running MCMC when fitting a geostatistical spatial model.

Data augmentation and parameter expansion are both modeling techniques that can lead

to optimal iterative sampling algorithms for MCMC. Data augmentation allows for simpler

and more feasible simulation from a posterior distribution by conditioning on latent, or

augmented data (Tanner and Wong, 1987). Parameter expansion was first introduced by
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Liu et al. (1998) as a way to accelerate the convergence of the EM algorithm by increas-

ing the variability between iterations and has been adopted by Bayesians for sampling from

the posterior distribution. Parameter-expanded data augmentation further enhances itera-

tive sampling and is an advancement of data augmentation algorithms. We propose data

augmentation and parameter-expanded data augmentation algorithms for fitting MCMC to

spatial probit models for binary and ordinal response data (Chapter 2).

Parameter identifiability is another issue when fitting the latent variable model due the

multivariate response data, number of parameters, unobserved latent variables, and spatial

random effects. A model using multiple response variables to obtain inference on a univariate

measure closely resembles a common factor model (Spearman, 1904). We assume the univari-

ate measure of wetland condition is a latent variable, or common factor, that relates to the

multivariate observed data using metric-specific factor loadings. We investigate parameter

identifiability for the common factor model for multivariate ordinal response data (Chapter

3). We extend the common factor model to include covariates and spatial correlation so we

can predict wetland condition at unobserved locations. The partial sill and range parameter

of a spatial covariance function are difficult to estimate. Therefore, we continue our explo-

ration of parameter identifiability to include spatial parameters of the spatial probit model

for binary and ordinal response data.

Our spatial probit model for binary and ordinal response data follows the common factor

model approach in order to encompass multivariate response data and provide univariate

measure for wetland condition across space. However, there are other forms of the spatial

probit model (e.g. De Oliveira, 2000). We discuss two different spatial probit model struc-

tures and the implications of fitting each model (Chapter 4). We compare the models in

terms of their impact on parameter estimation and prediction at unobserved locations. This

work includes a new approximation for predicting binary and ordinal response data that is

both accurate and efficient.
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We return to the data set that motivated this work in Chapter 5. We proposed a multi-

variate multilevel latent variable model for evaluating the condition of wetlands in Colorado.

The model is for mixed ordinal and continuous multivariate data to evaluate a latent spa-

tial Gaussian process. It can be used in many contexts where mixed continuous and discrete

multivariate response data are observed in an effort to quantify and unobservable continuous

measurement. The model is a modified common factor model in that the common factor is

a latent spatial Gaussian process that includes covariate information and spatial correlation.

The latent process gives a univariate measure of wetland condition and allows for prediction

at unobserved locations. The model is also able to quantify the relationship between the

latent process and the response variables allowing us to establish model-inferred weights for

each metric. We apply the model to multivariate data collected in the North Platte and

Rio Grande River Basins. We conclude the dissertation with a conclusion and future work

(Chapter 6).

The remainder of this chapter discusses modeling ordinal response data and its challenges.

Section 1.2 gives a general overview of ordinal data and modeling approaches. We define the

probit linear model (PLM) that can be used for ordinal response data and is comparable to

the GLM. In Section 1.3 we discuss modeling spatially correlated ordinal response data. We

discuss generalized linear mixed models (GLMMs) with spatial random effects and define the

probit linear mixed model (PLMM) that can be used to model spatially correlated ordinal

response data.

1.2 Modeling ordinal data

Ordinal data are a type of categorical data where the possible classes of the variable have

a distinct order. Some examples of ordinal data include the classification of a university

student, (freshman, sophomore, junior, senior), a response to a survey question (strongly

disagree, disagree, neutral, agree, strongly agree), or fire danger in a national park (low,

moderate, high). Whereas these variables are categorical and could be modeled as such, there
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is additional information in knowing that the categories have an inherent order. Therefore,

we want to choose from models that are able to account for the order in the response variable

to improve on both parameter estimation and prediction.

1.2.1 Multinomial distribution approach to ordinal data

We begin with a simple example. Let Y be an observable ordinal random variable that

takes on values in the set {1, . . . , K}. For k = 1, . . . , K, we can define πk as

πk = P (Y = k)

where
K∑

k=1

πk = 1.

We could assume the random variable Y follows a multinomial distribution such that

Y ∼ Multinomial(1, π1, . . . , πK).

For ease of notation, define the vector of probabilities as π = (π1, . . . , πK).

One of the fundamental difficulties in modeling ordinal data in general is in determin-

ing which functional form defines the relationship between the probability of being in each

category and the explanatory variable(s). Agresti (2002, Chapter 7) suggests various link

functions and models for ordinal and multinomial response data. Models that assume there

exist explanatory variables that are driving the ordinal response are known as ordinal re-

gression models. The function used to link π to the explanatory variables is known as a link

function. In our example, let X be a vector of explanatory variables for random variable

Y . We wish to link X to the probabilities of each category, (π1, . . . , πK), in a meaningful

way. There are many different link functions that can be chosen to model categorical data

and yet there are rarely conclusive reasons for choosing one over another. Therefore, it is
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common practice to model the data using multiple link functions and to choose the one that

results in the best fit of the model to the data (Johnson and Albert, 1999, Chapter 3).

Before describing the different link functions, it is important to note that often ordinal

regression models are defined in terms of cumulative probabilities as opposed to the K

individual category probabilities, πk. This maintains the ordering between ordinal categories.

Cumulative probabilities are defined as the probability that an observable random variable

is in category k or below. That is, let

ηk = P (Y ≤ k) =
k∑

j=1

πj .

Using the cumulative probabilities, η, we can compute the individual category probabilities,

π, as

πk = P (Y = k)

= P (Y ≤ k) − P (Y ≤ k − 1)

= ηk − ηk−1.

(1)

Define the link function, F , that relates X to ηk, for k = 1, . . . , K, by

ηk = F (X).

Two common link functions are the logistic link and probit link. In the GLM framework,

the logistic link function, also referred to as logit, is defined as

logitηk = log

(
ηk

1 − ηk

)
= λk − X ′β (2)

where λk is a category-specific parameter such that λ0 = −∞, λK = ∞, and λk ≤ λk′ for

k < k′. Here, β is a parameter vector of coefficients of the explanatory variables. The logistic
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link function stems from logistic regression where the response variable is binary as opposed

to ordinal with K categories, By solving for ηk, we get

ηk =
exp{λk−X′β}

1 + exp{λk−X′β} .

Note that the GLM is linear in the covariates. When other functional forms of the covariates

are assumed, the model fits within the class of generalized additive models (GAMs).

The properties of the cumulative probabilities make cumulative distributions functions a

natural class of link functions for ordinal data. These properties are

1. ηk ∈ [0, 1] for all k ∈ {1, . . . , K}

2. ηk ≤ ηk′ for k < k′, k and k′ ∈ {1, . . . , K}

3. ηK = 1

Let F define the cumulative distribution function and f the probability density function of a

continuous random variable. We can express the cumulative probability of random variable

Y as

P (Y ≤ k) = ηk =

∫ λk

−∞
f(z − X ′β)dz.

The standard normal distribution is a common choice of cumulative distribution function

to use as a link function. This link function is referred to as the probit link and the model

containing covariate information is called a probit regression model. Here,

ηk = Φ(λk − X ′β) (3)

where Φ is the standard normal CDF and λk is a category-specific parameter as defined in

2. Similarly, it can be written as Φ−1(ηk) = λk − X ′β. When Y is assumed to be drawn

from a multinomial distribution with probability vector, π, the probit regression model

assigns probabilities to each of the K categories by integrating the standard normal CDF.
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For example,

P (Y = 1) = Φ(λ1 − X ′β) =

∫ λ1

−∞
f(z − X ′β)dz

where f is the probability density function of the standard normal distribution defined as

f(z) =
1√
2π

exp{
−1
2π

z2} for z ∈ (−∞,∞).

Similarly, for k = 2, . . . , (K − 1),

P (Y = k) = Φ(λk − X ′β) − Φ(λk−1 − X ′β) =

∫ λk

λk−1

f(z − X ′β)dz.

Lastly,

P (Y = K) = 1 − Φ(λJ−1 − X ′β) = 1 −
∫ λK−1

−∞
f(z − X ′β)dz =

∫ ∞

λK−1

f(z − X ′β)dz.

1.2.2 Latent variable approach to ordinal data

A convenient alternative parameterization of the multinomial distribution of Y is through

latent variables. Latent variables are unobserved quantities that are often functions or

transformations of the variables of interest. Defining a model in terms of latent variables can

sometimes ease computation. This is an example of data augmentation which we discuss

further in Chapter 2. In ordinal regression, latent variables can be extremely useful and

efficient for modeling cumulative probabilities. Another argument for latent variable models

for the probit model is that it is reasonable to argue that a latent continuous random variable,

Z, generated the observable ordinal data, Y . Define Z as a latent continuous random variable

corresponding to the ordinal random variable, Y . Given the threshold vector, λ, assume there

exists a deterministic relationship between Y and Z such that
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Figure 1.1: Modeling ordinal data with a latent variable.

Y =






1 λ0 < Z < λ1

2 λ1 < Z < λ2

...
...

K λK−1 < Z < λK

where

−∞ = λ0 ≤ λ1 ≤ . . .λK = ∞.

Figure 1.1 shows an example of the relationship between Y and Z for K = 4 and λ =

(−∞, 0, 1, 2.5,∞).

In the latent variable framework, we link the explanatory variables, X, to the ordinal

response variable through the latent variable. If we assume that Z is normally distributed

with a mean X ′β and variance fixed to 1, the latent variable approach is equivalent to the

multinomial regression model with probit link function. That is,

P (Y = 1) = P (Z ≤ λ1) = Φ(λ1 − X ′β) =

∫ λ1

−∞
f(z − X ′β)dz.

In general, for k ∈ {1, . . . , K},
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P (Y = k) = P (Z ≤ λk) − P (Z ≤ λk−1) = Φ(λk − X ′β) − Φ(λk−1 − X ′β).

One of the advantages of the probit link function is that the latent variable, Z, is Gaus-

sian. In Chapter 2 we will show that this allows for conjugate updates for some model

parameters when modeled in a Bayesian framework. Further, we will show that the latent

variable approach to modeling ordinal data using the probit regression model can lead to

simpler iterative sampling algorithms for parameter estimation and inference. For each k,

P (Y = k) is not unique to the link function or the values of the threshold vector λ. That

is, a different link function and different threshold values can preserve the probability of

the random variable Y being in each ordinal category. Therefore, we discuss parameter

identifiability for the probit model in Chapter 3.

1.3 Generalized and probit linear models

Generalized linear models (GLMs) are a large class of models that generalizes ordinary

linear regression to allow for response variables that are not normally distributed. The

generalization assumes that the response variable is from a distribution in the exponential

family where the mean of the distribution, µ, depends on the explanatory variables, X, via

a link function. That is,

E(Y ) = g(µ) = X ′β (4)

for some link function g.

GLM models are similar to the probit regression model (3) introduced in Section 1.2.

The probit model, however, is only within the class of GLMs for binary data, or ordinal data

with two categories. The probit regression model for ordinal data with K ≥ 3 is not within

the class of generalized linear models. We illustrate the difference between the GLM and

probit regression model through an example. Assume Y is an ordinal random variable with
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three possible outcomes, namely, Y ∈ {1, 2, 3}. We write the expected value of Y as

E(Y ) =
3∑

k=1

kP (Y = k)

= 1Φ(λ1 − X ′β) + 2 (Φ(λ2 − X ′β) − Φ(λ1 − X ′β)) + 3 (1 − Φ(λ2 − X ′β))

= 3 − Φ(λ2 − X ′β) − Φ(λ1 − X ′β).

Letting E(Y ) = µ, there does not exist a function g such that g−1(X ′β) = µ. Therefore, the

probit regression model with 3 ordinal categories does not fit within the GLM framework.

This generalizes to ordinal data with K ≥ 3. When K = 2 such that the data is binary,

however, the probit regression model does fit within the GLM framework. Letting Y ∈ {0, 1},

we can write

E(Y ) = 0P (Y = 0) + 1P (Y = 1) = P (Y = 1) = 1 − Φ(λ1 − X ′β).

For identifiability of the probit model, let λ1 = 0 (see Chapter 3 for further discussion of

probit model identifiability). Therefore,

E(Y ) = µ = 1 − Φ(−X ′β) = Φ(X ′β).

Defining the link function, g, as g = Φ−1, then g(µ) = X ′β.

Generalized linear mixed models (GLMMs) are an extension to GLMs in that they allow

the linear predictor to contain random effects as well as fixed effects. A GLMM with one

random effect, α, can be written as

E(Y ) = g(µ) = X ′β + α (5)

and can extend to include additional random effects. Similarly, we define the probit regres-

sion mixed model as an extension to the probit regression model (3) where the cumulative
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probability, ηk, for k = 1, . . . , K, now contains random effects as well as fixed effects. A

probit regression mixed model with one random effect, α, can be written as

ηk = P (Y ≤ k) = Φ(λk − X ′β − α). (6)

Notice that the cumulative probabilities, ηk, for k = 1, . . . , K are defined as a linear

function of the covariates in the probit regression model and a linear function of the covariates

and random effect in the probit regression mixed model. Therefore, we refer to the probit

regression model and probit regression mixed model for both binary and ordinal response

data as a probit linear model (PLM) and probit linear mixed model (PLMM), respectively. In

the binary case, the PLM and PLMM are in the class of the GLM and GLMM, respectively.

The remainder of this work focuses on modeling multivariate mixed discrete and con-

tinuous response data with emphasis on ordinal response data using the PLM and spatial

PLMM. We fit both the PLM and spatial PLMM in the Bayesian framework. We assign

prior distributions to the model parameters and use MCMC sampling algorithms to esti-

mate the posterior distribution. In Chapter 2, we present a set of data augmentation and

parameter-expanded data augmentation algorithms for spatial and non-spatial binary and

ordinal response data. Chapter 3 defines parameter identifiability as it applies to both fre-

quentist and Bayesian inference. We propose parameter constraints for a multivariate latent

variable model for ordinal response data. We investigate identifiability and estimability of

the parameters of the spatial PLMM for binary and ordinal response data. In Chapter

4 we compare two different forms of spatial probit model for binary and ordinal response

data in terms of parameter estimation and prediction. In Chapter 5 we develop a multilevel

latent variable model for multivariate response data. The model is applied to mixed ordi-

nal and continuous response data collected as part of the Colorado Department of Wildlife

(CDOW) Wetlands Program to create a Basinwide Wetland Profile. Chapter 6 concludes

with a discussion and future work.
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CHAPTER 2

DATA AUGMENTATION AND PARAMETER EXPANSION FOR

ORDINAL, SPATIAL DATA

2.1 Introduction

The primary goal of data augmentation is constructing an optimal and iterative sampling

algorithm by introducing latent or unobserved variables into the model. The approach first

became popular within deterministic algorithms for maximizing likelihood functions or pos-

terior densities using the expectation-maximization (EM) algorithm (Dempster et al., 1977).

The work of Tanner and Wong (1987) popularized data augmentation within the literature

of stochastic algorithms by developing the method for posterior sampling. The schemes were

used to make simulating from the posterior distribution simpler and more feasible. The

method is known in the physics literature as the method of auxiliary variables. As shown in

Swendsen and Wang (1987), the method improves the speed of iterative simulation. In “The

Art of Data Augmentation,” Van Dyk and Meng state:

“Constructing data augmentation schemes that result in both simple and fast algorithms is

a matter of art in that successful strategies vary greatly with the observed-data models being

considered” (1).

We agree that constructing a data augmentation algorithm is in fact an art, seeing that there

exists many different sampling schemes for even the simplest models.

With the desire to make computations easier and more effective, much work has gone into

the advancement of data augmentation algorithms. Liu and Wu (1999) developed what they

call a parameter-expanded data augmentation (PX-DA) algorithm that further enhances the

iterative conditional sampling of Tanner and Wong (1987). Parameter expansion was first
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Table 2.1: Outline of data augmentation and parameter-expanded data augmentation
algorithms used in fitting spatial and non-spatial probit models to binary and ordinal

response data.

Binary data Ordinal data
Non-spatial models

Data Algorithm 1: Albert and Chib (1993) Algorithm 3: Albert and Chib (1993)
augmentation Algorithm 4: Cowles (1996)

Albert and Chib (1997)
Algorithm 5

Parameter- Imai and Van Dyk (2005) Algorithm 6
expanded data Algorithm 8 Algorithm 9

augmentation
First-stage spatial models

Data Oliveira (2000)
augmentation

Parameter- Berrett and Calder (2012)
expanded data
augmentation

Second-stage spatial models
Data Algorithm 10 Algorithm 13
augmentation

Parameter- Algorithm 11 Algorithm 14

expanded data Algorithm 12 Algorithm 15

augmentation

introduced by Liu et al. (1998) as a way to accelerate the convergence of the EM algorithm.

The idea is that when incorporating missing or latent data into the model, the parameter

space of the data model is expanded which can lead to an increased convergence rate of the

algorithm. They show that the extra parameters can be introduced in the model without

distorting the original observed data model.

In this work, we first outline the idea of data augmentation in the context of Bayesian

analysis with the desire to draw iteratively from a posterior distribution. We then define

data augmentation as it applies to modeling binary and ordinal response data. Table 2.1

summarizes data augmentation and parameter-expanded data augmentation algorithms for

spatial and non-spatial, binary and ordinal response models proposed over the past 20 years.

Algorithms in bold are those developed in this work. We advance the data augmentation
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Table 2.2: Descriptions of acronyms used in data augmentation and parameter-expanded
data augmentation algorithms in this chapter.

Acronym Description
DA Data augmentation
PX Parameter expansion
PDA Partial data augmentation
PX-DA Parameter-expanded data augmentation
PX-PDA Parameter-expanded partial data augmentation
PX2-PDA Twice parameter-expanded data augmentation
RV Random variance
RT Random threshold

scheme by proposing a set of parameter-expanded approaches for binary and ordinal data.

Lastly, we extend the sampling algorithms to probit linear mixed models (PLMMs) for

spatially correlated binary and ordinal data. Refer to Table 2.2 for a list of acronyms used

in this chapter.

2.2 Data Augmentation

The goal of data augmentation strategies within the Bayesian framework are to weaken

the dependence between draws from the posterior distribution within a Markov chain Monte

Carlo algorithm (Liang et al., 2011). Chains with lower parameter dependence have better

mixing and faster convergence. Therefore, models with an elaborate hierarchy structure or a

high-dimensional parameter space can greatly benefit from the approach. Data augmentation

techniques have been shown to increase the conditional variability of the parameters of

interest given the observed (or augmented) data. This leads to larger jumps between draws

of the parameters within the chain, and therefore, the parameter space can be explored faster

and more efficiently. A second benefit of data augmentation is that it can also lead to drawing

from posterior distributions that are known in closed form. For a Gibbs sampling algorithm,

this can alleviate the need for Metropolis-Hastings steps in some cases, also leading to a

decrease in computation time.
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Data augmentation strategies can be used in many varieties in Bayesian analysis. They

were first introduced by Tanner and Wong (1987) as a method for dealing with missing

values. Royle et al. (2007) developed a data augmentation scheme for multinomial models

with unknown population sizes. They augment the data by including a known number

of all-zero entries for those subjects not detected (or observed) in the survey and model

the augmented dataset as a zero-inflated version of the complete data model. Cauchemez

et al. (2004) developed a data-augmented model for estimating transmission characteristics

of infectious disease. Here, the observed data are the dates in which new cases of disease

are observed and the augmented data include the unobserved dates of the start and end

of the infectious period. The augmented data are sampled at each iteration of the MCMC

from their posterior distribution given the observed data and parameters. Therefore, data

augmentation is a versatile tool as it applies whenever the data can be augmented in such a

way that it is easy to both analyze and generate the augmented data given the parameters.

We outline the data augmentation algorithm in the context of a Bayesian analysis where

there is missing observable data. This missing data can alternatively be thought of as “latent

variables” introduced in latent variable modeling. For example, latent variable models are

beneficial when modeling discrete response data, such as binary or multinomial data. In this

work we focus on latent variable models for binary and ordinal response data. We begin by

defining data augmentation for binary data since it is the simplest case of ordinal data having

only two categories. We will then generalize the data augmentation strategy for ordinal data

with 3 or more categories.

2.2.1 General framework for binary data

Data augmentation is beneficial when you have a complicated likelihood function that

is difficult to maximize when doing maximum likelihood estimation. In Bayesian analysis,

data augmentation is beneficial when the likelihood function creates a posterior distribution

that is not available in closed form. For example, we may be interested in drawing from
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the posterior distribution of the parameter, β, which can be a scalar or vector, given the

observed data, y. The posterior distribution is written as p(β|y) ∝ p(y|β)p(β) where p(y|β)

is the likelihood and p(β) is the prior distribution.

When modeling ordinal data, it is difficult to draw from the posterior distribution because

it is not known in closed form. This makes data augmentation strategies extremely beneficial.

The probit model is a common approach for modeling ordinal data. Here, we consider a two-

class ordinal model as a simplified example of ordinal data. Assume the observable data, Y ,

are binary taking on one of two possible outcomes which we denote 0 and 1. Under the probit

model, P (Yi = 1|Xi, β) = Φ(X′

iβ) where X i is a vector of observable covariates and Φ is

the CDF of the standard normal distribution. Defining the observed data as y = [y1, . . . , yn],

the posterior distribution of β given the data, y, is given by

p(β|y) ∝ p(y|β)p(β) =
n∏

i=1

(Φ(X ′
iβ))yi(1 − Φ(X ′

iβ))1−yi × p(β). (7)

This posterior distribution is not available in closed form because the likelihood function

contains Φ, the standard normal CDF. Therefore, the Gibbs sampler requires a Metropolis-

Hastings step. This motivates the desire for an easier scheme for sampling from the posterior

distribution.

2.2.2 Data augmentation for binary data

Alternatively, the probit model can be defined using latent variables and is an application

of data augmentation (Albert and Chib, 1993). The latent variable, defined by Zi, is such

that Zi = X ′
iβ + εi where εi ∼ N(0, 1). The relationship between the latent variable, Zi,

and the observable random variable Yi is such that

P (Yi = 1|β) = P (Zi > 0) = P (Zi − X ′
iβ > −X ′

iβ) = Φ(X ′
iβ). (8)

Therefore, the model is equivalent to that in (7).
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Algorithm 1. Two-step Gibbs sampler for binary data:

1. Draw Zt from p(Z|y, βt−1).

2. Draw βt from p(β|y, Zt).

The data-augmented model (8) has advantages over the original model (7) because we

can first write the observed data as

p(y|β) =

∫

Z

p(y, Z|β)dZ.

In the Bayesian framework using Markov chain Monte Carlo (MCMC), we need to sample

β from the posterior distribution p(β|y) ∝ p(y|β)p(β). Notice that the joint distribution of

the parameter, β, and the latent variable Z can be written as

p(β, Z|y) ∝ p(y, Z|β)p(β).

Therefore, we would like to sample from

p(β|y) ∝
∫

z

p(y, Z|β)dZ p(β).

In general, data augmentation is only beneficial when the conditional distributions of the

data-augmented model are easier to sample from than the conditional distributions of the

model containing only the observed data. For the probit model, it requires that the two

conditional distributions, p(Z|y, β) ∝ p(y, Z|β) and p(β|y, Z) ∝ p(y, Z|β)p(β), are known

in closed form. In such a case, the data augmentation algorithm can follow a two-step Gibbs

sampler.

In the case where p(Z|y, β), p(β|y, Z), or both, are not known in closed form, the data

augmentation approach only further complicates the problem. Therefore, augmenting the
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model in a way that helps without hindering can take creativity. When modeling binary

observed data, y, with the probit model, p(Z|y, βt−1) is a truncated-normal distribution

with mean Xβ and variance of 1. The truncation is such that Zi ≤ 0 when yi = 0 and

Zi > 0 when yi = 1. The variance of Z is fixed to 1 since it is not identifiable given the data.

Fixing the variance to 1 is referred to as conditional data augmentation and will be discussed

in Section 2.3.1. When conditioning on the augmented data (y, Z), the multivariate normal

distribution is a conjugate prior for the parameter β. Assuming a non-informative prior, we

let p(β) ∼ N(0,Σβ) where Σβ = σ2
βI, σ2

β is large, and I is the (p × p) identity matrix and p

is the length of the vector β. The conditional distribution of p(β|y, Zt) is

p(β|y, Zt) ∼ N((X ′X + Σ−1
β )−1X ′Zt, (X ′X + Σ−1

β )−1). (9)

As a result, sampling from both conditional distributions in steps 1 and 2 of Algorithm 1

are easy, computationally.

Modeling ordinal data using the probit link function and the data augmentation strategy

has other advantages as well. Since the latent variable, Z, introduced in the model is

normally distributed, it allows for conjugate priors and closed-form posterior distributions

for many parameters. The model easily fits within the framework of latent Gaussian models

(LGMs). LGMs are a flexible class of models that are easily-interpretable and commonly

used in many statistical modeling applications.

2.2.3 Data augmentation for ordinal data

The binary response model can be generalized to allow the ordinal response variable to

be of the set {1, 2, . . . , K}. Whereas above we used 0 as a threshold for the standard normal

CDF to classify Yi as either 0 or 1, we now must introduce additional parameters as cut-

points (thresholds) into the model. We define the density of observable Yi, in terms of the
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Algorithm 2. Hybrid Gibbs algorithm for ordinal data:

1. Sample λt from the conditional distribution p(λt|y, βt−1).

2. Sample βt from the conditional distribution p(βt|y, λt).

covariates, X i, coefficients β, and thresholds, λ, as

P (Yi = k) = Φ (λk − X ′
iβ) − Φ (λk−1 − X ′

iβ) (10)

where λ is the vector of cut points such that −∞ = λ0 < λ1 ≤ . . .λK−1 < λK = ∞. For

identifiability of the intercept term of the coefficient vector, β, we fix the first cut-point,

λ1 = 0.

To draw inference on the parameters, we again need to assign prior distributions to both

β and λ. Our goal is to sample from the posterior distribution p(β, λ|y). Using Gibbs

sampling, we are able to sample iteratively from the conditional distributions of β and λ

separately. Therefore, we wish to sample according to Algorithm 2.

To apply data augmentation methods outlined above, we need to introduce the latent

variable Z. We define the deterministic relationship between the latent variable and observ-

able ordinal response data using (4) where

P (Yi = k) = P (λk−1 < Zi ≤ λk)

for k = 1, . . . , K and λ = (−∞ = λ0 ≤ λ1 ≤ . . .λK = ∞).
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Algorithm 3. Data-augmented Gibbs sampler for ordinal data:

1. Draw Zt from p(Z|y, βt−1, λt−1).

2. Draw λt from p(λ|y, Zt, βt−1).

3. Draw βt from p(β|y, Zt, λt).

Once again, we assume Zi = X ′
iβ + εi where εi ∼ N(0, 1). Following the notation from

the binary response model, we can write out the density of Yi in terms of Zi as

P (Yi = k) = P (λk−1 < Zi ≤ λk) = P (Zi ≤ λk) − P (Zi ≤ λk−1)

= Φ (λk − X ′
iβ) − Φ (λk−1 − X ′

iβ) .
(11)

Therefore, the data-augmented likelihood is equivalent to the likelihood for the observed

data model given in (10).

Using the augmented data approach, there are several sampling algorithms for drawing

inference. One approach would be to use a Gibbs sampler where Z, λ, β are all drawn from

their full conditional distributions (Albert and Chib, 1993). This algorithm, referred to as

the data-augmented Gibbs sampler, is given in Algorithm 3.

Whereas under the observed-data model where both λ and β would require Metropolis-

Hastings steps using Algorithm 2, this augmented data approach has a major advantage

in that the conditional distribution of β is known in closed form. Since the latent data,

Z, is multivariate normal, this extends beyond the ease of drawing β as it also allows

for conjugate prior distributions for other variables, such as random effects, one might be

interested in including in the model.

Unfortunately, in practice there is also a significant limitation to the data-augmented

Gibbs sampler. The Markov chain for λ can be extremely slow to mix due to the constraints

on the parameters. For example, not only is λk forced to be greater than λk−1 and less than

21



λk+1, but when conditional on Z, λk must be within the interval

[max{λk−1, {Zi : Yi = k}}, min{λk+1, {Zi : Yi = k + 1}}].

This range can be tremendously limiting, therefore, restricting the movement between the

parameter vector λ at iteration t and iteration t + 1. Notice that the restrictive space is an

issue regardless of the prior distribution assigned to λ. Therefore, implementing the Gibbs

sampler can be ineffective in practice.

Cowles (1996) extends the data augmentation approach of Albert and Chib (1993) by

using the continuous latent variable approach for fitting the ordinal probit model. She

demonstrates that the convergence of Algorithm 3 may be slow when the sample size is

large. Therefore, she proposes a multivariate Hastings-within-Gibbs step that accelerates

the convergence of the Markov chain. The sampling scheme encompasses a “grouping” or

“blocking” approach that usually improves the efficiency of a Gibbs sampler (Roberts and

Sahu, 1997). The blocking is applied by updating Z and λ jointly. Then, β is updated from

its complete conditional distribution as before.

The blocking scheme for (Z, λ) is implemented by first writing the joint distribution as

p(Z, λ|y, β) ∝ p(Z|λ, y, β)p(λ|y, β).

The posterior density p(λ|y, β) is the original posterior density of the observed data model

in Algorithm 2. The target density can be written written as p(λ|y, β) ∝ p(y|λ, β)p(λ),

assuming prior independence between λ and β. This updating step will require a Metropolis-

Hastings step within the Gibbs sampler since

p(y|λ, β) =
n∏

i=1

(Φ(λk − X ′
iβ) − Φ(λk−1 − X ′

iβ)).
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Algorithm 4. Cowles algorithm for ordinal data:

1. Draw (Zt, λt) from p(Z, λ|y, βt−1).

(a) Draw λc from g(λc|λt−1).

(b) Compute the Metropolis-Hastings ratio

a = min

{
1,

f(λc)g(λt−1|λc)

f(λt−1)g(λc|λt−1)

}
. (12)

(c) With probability a,

i. Set λt = λc

ii. Draw Zt from p(Z|y, βt−1, λt).

(d) With probability 1 − a, set λt = λt−1 and Zt = Zt−1.

2. Draw βt from p(β|y, Zt, λt).

To give a general idea of this approach, we let f be the target density we wish to sample from

and g the proposal distribution for λ. The Cowles algorithm and block update is outlined in

Algorithm 4.

In Algorithm 4, the complete conditional distribution of Zi, where Zi and Zj, for i *= j,

are conditionally independent given parameters and data, is the truncated-normal. Letting

TN(µ, σ2,λlower,λupper) specify a normal distribution with mean µ and variance σ2 truncated

between λlower and λupper, the second part of (c) draws Zt
i from TN(X ′

iβ
t−1, 1,λt

yi−1,λ
t
yi

) for

i ∈ 1, . . . , N . Lastly, the algorithm samples β from its complete conditional distribution. The

blocking scheme increases the variability within the chain for the threshold parameter vector,

λ, by not including Z in the conditional distribution in which λ is updated. The algorithm is

called a multivariate Hastings-within-Gibbs algorithm because λ and Z are updated jointly

based on acceptance probability, a. Even though the overall acceptance probability for the

latent parameter in the Cowles algorithm is less than that of the Gibbs algorithm (assuming

a < 1 for at least 1 iteration), the convergence of the chain is still improved when λ has
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better mixing. Therefore, the Cowles algorithm (A.4) is highly recommended over the data-

augmented Gibbs algorithm (A.3).

The Cowles algorithm, and more specifically, the mixing of λ, is enhanced further in the

work of Albert and Chib (1997) by applying a transformation to the thresholds. Constraining

the threshold parameter vector, λ, such that λk−1 ≤ λk leads to poor mixing of the Markov

chain for this parameter. Therefore, Albert and Chib (1997) propose transforming λ by

setting α = g(λ), where the function g(λ) is such that α1 = λ1 = 0 and αk = log(λk −λk−1)

for k = 2, . . . , K − 1. The unconstrained threshold parameter vector α is modelled p(α) ∼

N(a0, A0). As shown above, sampling λt given y and β requires a Metropolis-Hastings step

since the posterior is not known in closed form. We first transform λ to α as described

above. By defining the likelihood, proposal, and prior distributions all in terms of α, we

don’t need a Jacobian in the M-H ratio. The M-H ratio contains the densities p(y|α, β) and

p(α), as well the the proposal distribution, f(αc|α), where αc is the candidate of α. At

step t, the algorithm moves to the candidate parameter, αc, from the current value, α, with

transition probability

a∗ = min

{
p(y|αc, βt−1)f(α|αc)p(αc)

p(y|α, βt−1)f(αc|αc)p(α)
, 1

}
. (13)

We transform back from αt to λt via λt = g−1(αt). This acceptance probability, a∗, can

replace the acceptance probability in (12) and has been shown to further improve convergence

of the Markov chain.

Thus far, the main benefit of data augmentation is that is allows us to easily draw the

parameter β from its full conditional distribution. This will become even more useful as

the model is made more complex by incorporating spatial or temporal correlation between

observations. Unfortunately, we also know that the mixing of the chain for the threshold

parameter, λ, is much more efficient using the un-augmented data approach. If we were to

include the latent variable Z in the conditional distribution of λ, as in the Gibbs sampler, we
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Algorithm 5. Partial data-augmented algorithm (PDA) for ordinal data:

1. Draw λt from p(λ|y, βt−1).

2. Draw βt from p(β|y, λt).

(a) Draw Zt from p(Z|y, βt−1, λt).

(b) Draw βt from p(β|y, Zt, λt).

need to sample λt from p(λt|y, Zt, βt−1). Even when transforming the thresholds vector into

the unconstrained vector α, this would require the M-H algorithm to include the conditional

density p(Z|y, αc, βt−1) and p(Z|y, α, βt−1) in the numerator and denominator, respectively.

This is an issue because p(Z|y, αc, βt−1) can easily be 0 when the candidate threshold vector

shifts causing the current value of Z to be in the incorrect class according to the observed

data y. When this happens, the acceptance probability goes to 0 and the chain can get stuck

for a long duration of iterations. Therefore, the ideal sampling algorithm would:

1. Update λ using the transformation g(λ) = α.

2. Sample λ from p(λ|y, β) as opposed to p(λ|y, Z, β).

3. Avoid updating λ and Z as a block because this forces Z to be updated with the

Metropolis-Hastings step of λ.

4. Sample β conditional on both the observed data y and the augmented data Z.

We proposed the partial data-augmented (PDA) algorithm to achieve these goals. It

combines the un-augmented sampling scheme given in Algorithm 2 with the Gibbs scheme

in Algorithm 3. This leads to the following algorithm.

The first step of Algorithm 5 consists of updating λ using the original likelihood of the

observed data given in Algorithm 2. We can apply the transformation approach and update λ

using the Metropolis-Hastings acceptance probability in equation (13). In the second step,
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we introduce the latent variable, Z, and implement the data-augmented two-step Gibbs

sampler (Tanner and Wong, 1987). We use the two-step Gibbs sampling algorithm to first

sample Zt from p(Z|y, βt−1, λt) and then sample βt from p(β|y, Zt, λt). The distribution

of p(Z|y, βt−1, λt) is a truncated-normal distribution with the new threshold values from

step 1. Assuming a multivariate normal prior distribution, the posterior distribution of β

given the observed data, latent variable, and threshold parameter is the same as that given

in (9).

This sampling scheme was employed in Albert and Chib (1997). However, in that work,

they said the scheme used the blocking approach for updating Z and λ. Therefore, their

evidence of both increased speed and mixing of the chain is not the result of only the

transformation of λ. It also is the result of sampling Z at every iteration, independent of

the acceptance probability of the Metropolis-Hastings algorithm computed for moving from

αt−1 to the candidate value α∗, and thus, outside of the block update of Z and λ. We

want to be clear that in the partial data augmentation algorithm, none of the parameters

are being updated in a block. The PDA algorithm has further benefit as we introduce

parameter-expanded schemes for data augmentation in Section (2.3).

2.3 Parameter expanded data augmentation

In certain settings, the Gibbs sampler can be slow to converge. One cause can be high de-

pendence between realizations from the conditional posterior distribution in a Gibbs sampler.

As discussed above, data augmentation schemes are motivated by the need for alternative

distributions that allow sampling in closed form as compared to the original posterior distri-

bution. Parameter expansion algorithms are an extension of data augmentation algorithms.

They are shown to improve the convergence of the Markov chain by increasing the size of

the parameter space. The two approaches fit together nicely in that the parameters that are

introduced through parameter expansion are not identified by the observed data but they

are identified by the latent variables introduced in data augmentation. It is important to
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note that in order to implement parameter-expanded data augmentation (PX-DA), knowl-

edge about the identifiability of the model parameters is extremely important. There are

a considerable number of parameter expansion schemes available and determining which is

the best for the data and model at hand is as much an art as data augmentation. Imai and

Van Dyk (2005) present a set of data augmentation schemes using parameter expansion for

multinomial response data. Their model is modified by Berrett and Calder (2012) to handle

spatially correlated binary data. In this work, we explore various PX-DA approaches for

ordinal data. Our goal is to determine which PX-DA scheme is the most suitable for probit

regression for spatially correlated ordinal data.

2.3.1 Variance parameter approach

In the data augmentation algorithm for ordinal data, we defined the latent variable Z,

such that Zi = X ′
iβ + εi where εi

iid∼ N(0, 1) for i = 1, . . . n. The reason we have set

var(εi) = 1 is because the variance is not identifiable from ordinal data. This can be seen by

writing out the density of the observed value, Yi. Assume Z∗
i = X ′

iβ+ε∗i where ε∗i ∼ N(0, σ2)

P (Yi = k) = P (λk−1 < Z∗
i ≤ λk) = P (Z∗

i ≤ λk) − P (Z∗
i ≤ λk−1)

= Φ

(
λk − X ′

iβ

σ

)
− Φ

(
λk−1 − X ′

iβ

σ

)

= Φ (λ∗k − X ′
iβ

∗) − Φ
(
λ∗k−1 − X ′

iβ
∗)

= P (Zi ≤ λk) − P (Zi ≤ λk−1).

(14)

where λ∗k = λk/σ, λ∗k−1 = λk−1/σ, and β∗ = 1
σβ. Therefore, the thresholds and coefficients

are both only identifiable up to a constant.

Since σ2 is not identifiable, we can condition on any value for the variance of εi. Meng

and Van Dyk (1999) proved that a model that marginalizes over σ2 is more diffuse than a

model that conditions on a fixed value for σ2. The optimality of marginalizing over σ2 has

been shown in both the binomial and multinomial model. The data augmentation strategies
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introduced by Imai and Van Dyk (2005) and Berrett and Calder (2012) both allow σ2 to vary

throughout the MCMC algorithm, while the unidentified parameter is integrated out at each

iteration. We note that both Imai and Van Dyk (2005) and Berrett and Calder (2012) propose

two different parameter-expanded schemes for fitting multinomial and spatially correlated

binary data, respectively. The first draws σ2 once within the MCMC while the second

algorithm draws σ2 twice. We do not extend their first parameter-expanded algorithm to

the ordinal, spatial setting since they showed the second to be optimal in terms of convergence

and autocorrelation. Therefore, we develop our first PX-PDA algorithm that generalizes our

PDA approach by allowing ε ∼ N(0, σ2). Following the same notation as the earlier work,

we model

Z̃ ∼ N(Xβ̃, σ2I)

where ·̃ represents the unidentified form of the latent variable or parameter. The identified

model is written as

Z ∼ N(Xβ, I).

We define the following relationships between the identified and unidentified parameter sets:

Z = Z̃/σ, β = β̃/σ, and λ = λ̃/σ.

The work of Imai and Van Dyk (2005) and Berrett and Calder (2012) suggests that we run

our Markov chain using σ2 and the unidentified parameters Z̃, β̃, and λ̃. The estimates

of the identified parameters are then obtained by marginalizing over σ2. Since the major

advantage of parameter expansion is to increase the variation between draws in the Markov

chain, we maximize efficiency by running the entire chain using the unidentified parameters.

For the threshold parameter, λ, this suggests that at iteration t we draw the unidentified

parameter, λ̃
t
, and then obtain λt by setting λt = λ̃

t
/σt. However, recall from Section 2.2.3

and Algorithm 5, that we do not want to sample the threshold vector λ conditional on the

28



Algorithm 6. RV-PX-PDA algorithm for ordinal data:

1. Draw λt from p(λ|y, βt−1).

2. Draw βt from p(β|y, λt).

(a) Draw (Z̃
t
, (σ2)∗) from p(Z̃, σ2|y, βt−1, λt).

i. Draw (σ2)∗ from p(σ2|y, β̃
t−1

, λt) ∼ p(σ2).

ii. Draw Z̃
t
from p(Z̃|y, βt−1, λt, (σ2)∗)

∼ TN(X(βt−1σ∗), (σ2)∗, σ∗λt
y−1, σ

∗λt
y). Set Zt = Z̃

t
/σ∗.

(b) Draw (β̃
t
, (σ2)t) from p(β̃, σ2|y, Z̃

t
, λt).

i. Draw (σ2)t from p(σ2|y, Z̃
t
, λt).

ii. Draw β̃
t
from p(β̃|y, Z̃

t
, λt, (σ2)t) ∼ N(bp, Bp) where

bp = (X ′X + Σ−1
β )−1X ′Z̃

t
and Bp = (X ′X + Σ−1

β )−1.

Set βt = β̃
t
/σt.

augmented data. Therefore, we modify the framework of Imai and Van Dyk (2005) and

Berrett and Calder (2012) in order to develop a PDA approach that is preferable for ordinal

data. Parameter expansion for ordinal data is simplified using PDA because we already have

one transformation of the threshold vector λ to α and it eliminates the need for a second

transformation to the unidentified thresholds, λ̃ and α̃.

We will refer to our first parameter-expanded data augmentation algorithm as the ran-

dom variance parameter-expanded partial data augmentation algorithm (RV-PX-PDA). We

will outline the sampling algorithm for drawing from the parameter-expanded posterior dis-

tribution. The RV-PX-PDA strategy is once again a hybrid Gibbs sampler with Metropolis-

Hastings steps. For clarity, we diverge from the labels marginal and conditional data augmen-

tation used by Imai and Van Dyk (2005) and Berrett and Calder (2012) since our sampling

scheme is a combination of both data augmentation and parameter expansion. However,

where possible, we will make connections between our algorithm and their marginal aug-

mentation schemes.
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The first step in RV-PX-PDA is the same as the first step in Algorithm 5. Since RV-PX-

PDA diverges from the previous algorithm in step two, we will outline this step in more detail.

Recall that the goal of the second step is to draw βt from p(β|y, λt). In the PDA algorithm,

this is extended to the two-step Gibbs sampler by drawing Zt from p(Z|y, βt−1, λt) and βt

from p(β|y, Zt, λt). Here, we want to include the variance parameter σ2 in our updating

scheme to increase the variability within the Markov chain. Therefore, using our augmented

data in unidentified parameter form, we want to jointly draw (Z̃, (σ2)∗) and (β̃, σ2). Since

σ2 is drawn in both steps 2(a) and 2(b), we denote the first draw as (σ2)∗ and the second as

(σ2)t, where (σ2)t is the value that is being carried forward to the next iteration. The reason

we make note of this is because both Imai and Van Dyk (2005) and Berrett and Calder

(2012) define two different sampling algorithms for drawing (σ2)∗. We are adopting their

“Marginal Augmentation Scheme 1” as it was shown to be optimal. In contrast, at iteration

t, their Scheme 2 sets (σ2)∗ = (σ2)t−1 as opposed to drawing a new value.

We write the conditional posterior distribution required for part (a) of step 2 in Algorithm

6 as

p(Z̃, (σ2)∗|y, β, λ) ∝ p(Z̃|y, β, λ, (σ2)∗)p((σ2)∗|y, λ, β).

Therefore, we can update Zt by first drawing (σ2)∗ from p((σ2)∗|y, λt, βt−1). Assuming

λ, β, and σ2 are independent, p((σ2)∗|y, λ, β) = p(σ2) where p(σ2) is the prior distribution

of σ2 since σ2 is unidentifiable in the observed-data model. Next we are able to draw Z̃
t

from its complete conditional distribution which can be shown to follow a truncated-normal

distribution. For i, j ∈ 1, . . . , n, i *= j, Z̃i and Z̃j are conditionally independent given X and

have distribution

Z̃t
i = TN(X iβ

t−1σ∗, (σ2)∗, σ∗λt
yi−1, σ

∗λt
yi

).

We finish the step by setting Zt = Z̃
t
/σ∗.
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In part (b) of step 2, we wish to draw (βt, (σ2)t). The conditional posterior distribution

required in this update can be written as

p(β, σ2|y, Z̃, λ) ∝ p(β|y, Z̃, λ, σ2)p(σ2|y, Z̃, λ).

Once again, we will begin by first drawing σ2 given y, Z̃, and λ. Using Bayes’ Theorem, we

have

p(σ2|y, Z̃, λ) ∝ p(y|Z̃, λ, σ2)p(Z̃|λ, σ2)p(λ|σ2)p(σ2)

∝ p(Z̃|λ, σ2)p(σ2)

=

∫
p(Z̃, β̃|λ, σ2)p(σ2)dβ̃

= p(σ2)

∫
p(Z̃|β̃, λ, σ2)p(β̃|λ, σ2)dβ̃

= p(σ2)

∫
p(Z̃|β̃, σ2)p(β̃|σ2)dβ̃.

(15)

Under other sampling algorithms (i.e., when λ is not updated outside the data augmenta-

tion), p(λ̃|σ2) will not drop out of the derivation adding further complications to the desired

posterior distribution. Here, the integral
∫

p(Z̃|β̃, σ2)p(β̃|σ2)dβ̃ and can be evaluated by

completing the square of the multivariate normal distribution. The resulting distribution is

normal with σ2 as a scaling parameter of the variance-covariance matrix. Therefore, we can

write the posterior density in (15) as

p(σ2|y, Z̃, λ) ∝ p(σ2)
1

(σ2)n/2
exp

[
−

1

2σ2

(
(Z̃)′Z̃ − Z̃X(X ′X + Σ−1

β )−1X ′Z̃
)]

.

The conjugate prior distribution is p(σ2) ∼ Inv. Gamma(αs, βs). We draw (σ2)t from the

resulting posterior distribution:
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p(σ2|y, Z̃
t
, λt) ∼ Inv. Gamma

(
αs +

n

2
, βs +

1

2

(
(Z̃

t
)′Z̃

t
− Z̃

t
X(X ′X + Σ−1

β )−1X ′Z̃
t
))

.

Further details on this posterior derivation are included in Appendix A.2.1. We can then

draw β̃
t
given (y, Z̃

t
, λt, (σ2)t) from its complete conditional distribution,

p(β̃|y, Z̃
t
, λt, (σ2)t) ∼ N(bp, Bp)

where bp and Bp are given in Algorithm 6. The algorithm finishes by setting βt = β̃
t
/σt.

We apply PDA (A.5) and RV-PX-PDA (A.6) to ordinal response data with K = 5

categories. Therefore, we have three identified threshold parameters, λ2, λ3, and λ4, to

estimate, assuming λ1 = 0. We also include two covariates as fixed effects in the model,

resulting in an intercept term, β0, and coefficients β1 and β2. The data consist of n = 232

observations (See Section A.1 for further details of the data). We run Algorithms 5 and 6 for

100,000 iterations each, disregarding the first 10,000 as burn-in. The effective sample size is

calculated to approximate the number of independent posterior draws of the parameter from

the MCMC algorithm (Givens and Hoeting, 2012). Table 2.3 reports the effective sample

size for the two algorithms, indicating that the RV-PX-PDA algorithm outperforms the PDA

algorithm for all parameters. Autocorrelation plots are shown in Figures 2.1 and 2.2 for the

threshold vector, λ, and coefficient vector, β, respectively. Lower autocorrelation values

within the chains indicate that both λ and β are able to more easily move around when

being initially drawn in the nonidentifiable parameter space than in the identifiable parameter

space. This illustrates that the increased variation within the chains of the nonidentifiable

parameters, Z̃ and β̃, increases the variation within the identified parameters. As a result,

the RV-PX-PDA algorithm will converge more quickly. It is a particularly interesting result
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Table 2.3: Effective sample size for β and λ using PDA (A.5) and RV-PX-PDA (A.6) for
ordinal data with five categories for 90,000 iterations.

Algorithms
Parameter PDA (A.5) RV-PX-PDA (A.6)
β0 3,807 26,263
β1 17,114 40,824
β2 19,564 30,690
λ2 4,906 7,656
λ3 3,317 6,548
λ4 3,009 7,165

that the threshold parameter, λ, has lower autocorrelation using the RV-PX-PDA algorithm

since it is not updated using the augmented data.

2.4 Data augmentation via over-centering

Our second method of parameter-expanded data augmentation adopts the over-centering

approach given in Liu and Wu (1999). In their simple example, they define the observed-data

model p(y|θ) ∼ N(θ, 1 + D) where D is known. Whereas the observed data are multidimen-

sional random variables in general, they are kept as one-dimension in this example. The

complete data model (i.e., data-augmented model), where y is the observed response and Z

is the latent variable, is defined as

p(y|θ, Z) ∼ N(θ + Z, 1), p(Z|θ) ∼ N(0, D). (16)

Forcing Z to have mean 0 causes high correlation between θ and Z, thus, slowing down

convergence of the MCMC algorithm. Over-parameterizing the model such that

p(y|θ, Z,α) ∼ N(θ − α + Z, 1), and p(Z|θ,α) ∼ N(α, D) (17)
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Figure 2.1: Autocorrelation plots for the coefficient vector, β, using PDA (A.5) and
RV-PX-PDA (A.6).
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Figure 2.2: Autocorrelation plots for the threshold vector, λ, using PDA (A.5) and
RV-PX-PDA (A.6).

35



Algorithm 7. Simple over-centering algorithm for Gaussian data:

1. Draw (Zt,α∗) conditional on (θt−1, y).

(a) Draw α∗ from p(α|y, θt−1) ∼ N(0, A).

(b) Draw Zt from p(Z|y, θt−1,α∗) ∼ N
(

y−θt−1

1+D−1 + α∗, 1
1+D−1

)
.

2. Draw (θt,αt) conditional on (y, Zt).

(a) Draw αt from p(α|y, Zt) ∼ N
(

AZt

A+D , 1
A−1+D−1

)
.

(b) Draw θt from p(θ|y, Zt,αt) ∼ N(y − Zt + αt, 1).

decreases the correlation between Z and θ while still preserving the observed-data model.

The expansion parameter, α, is identifiable only for the complete data (y, Z). Assuming α

has prior distribution α ∼ N(0, A), they define the PX-DA algorithm (A.7).

This sampling scheme is shown to greatly improve the rate of convergence and yet is equiv-

alent to the original model.

2.4.1 Random threshold approach for binary data

We will use the idea of over-centering to improve the convergence of the ordinal data

model. First, we outline the data-augmented model and sampling algorithm using the binary

data model outlined above. Recall that the complete data consists of the observed data, y,

and latent data, Z. In our model, we assume Zi = λ + X ′
iβ + εi where εi ∼ N(0, 1). The

complete conditional distribution is truncated-normal with mean λ+X ′
iβ, variance of 1, and

truncation point, λ. This modifies the original data augmentation model in Section (2.2.3)

where the truncation point was fixed at 0. Notice that the complete-data model given in
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Algorithm 8. RT-PX-DA algorithm for binary data:

1. Draw (Zt,λ∗) conditional on (β, y).

(a) Draw λ∗ from p(λ|y, βt−1) ∼ TN(0, L).

(b) Draw Zt from p(Z|y, βt−1,λ∗) ∼ TN(λ∗ + Xβ, 1,λ∗y,λ∗y+1).

2. Draw (βt,λt) conditional on (y, Zt).

(a) Draw λt from p(λ|y, Zt) ∼ TN(µλ, τλ, lλ, uλ), where
τλ = (L−1 + n − 1′X(X ′X + Σ−1

β )−1X ′1)−1,

µλ = τλ (1′Zt − 1′X(X ′X + Σ−1
β )−1X ′Zt),

lλ = max{Zt
i : i ∈ C0}, and uλ = min{Zt

i : i ∈ C1}.
(b) Draw βt from p(β|y, Zt,λt)

∼ N((X ′X + Σ−1
β )−1X ′(Zt − 1λt), (X ′X + Σ−1

β )−1)

equation (8) is now written as

P (Yi = 1|β) = P (Zi > λ) = P (Zi − λ− X ′
iβ > λ− λ− X ′

iβ) = Φ(X ′
iβ),

which is the same as the observed data model p(y|β). Therefore, the model has been over-

centered by letting λ be both in the mean of Z and the threshold value that classifies the

binary observable response variable, y. Assign normal prior distributions to both λ and β

such that λ ∼ N(0, L) and β ∼ N(0,Σβ). Let C0 = {i : Yi = 0} and C1 = {i : Yi = 1}

for i ∈ 1, . . . , n. We define the random threshold parameter-expanded data augmentation

algorithm (RT-PX-DA) for binary response data in Algorithm 8.

Using a modified form of the ordinal response data (see Section A.1), we run Algorithms

1 and 8 for 10,000 iterations each and disregard the first 1,000 for burn-in. For this example,

the effective sample sizes (Table 2.4) and autocorrelation plots (Figure 2.3) are very similar

for the RT-PX-DA algorithm and the two-step Gibbs algorithm for the mixing of the Markov

chain for β. This indicates that there is no improvement in convergence for the random

threshold parameter-expanded data augmentation algorithm.
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Table 2.4: Effective sample size for β for the two-step Gibbs sampler (A.1) and RT-PX-DA
(A.8) for 9,000 MCMC iterations.

Algorithms
Two-step

Parameter Gibbs sampler (A.1) RT-PX-DA (A.8)
β0 1,481 1,473
β1 1,287 1,261
β2 981 810

    


















    


















    


















    


















    


















    


















Figure 2.3: Autocorrelation plots for the coefficient vector, β, for the two-step Gibbs
sampler (A.1) and RT-PX-DA (A.8) for 9,000 MCMC iterations.
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2.4.2 Unconstrained threshold approach for ordinal data

We extend the varying threshold model in Algorithm 8 to allow for ordinal data with

more than two categories. Assume, without loss of generality, that the response variable

y ∈ {1, . . . , 5}. In this case, we need four threshold parameters. In the PDA algorithm

(Section 2.2.3), we defined the threshold vector λ such that λ0 = −∞, λ1 = 0, and λ5 = ∞.

Therefore, we were left to estimate λ2, λ3, and λ4. We now would like to define a random

threshold algorithm for ordinal data that allows λ1 to vary. Our new algorithm, which we

refer to as RT-PX-PDA, is constructed as a combination of RT-PX-DA (A.8) and PDA

(A.5).

Since λ1 is a parameter only in the augmented data model but not the observed data

model, we ignore this unidentifiable parameter in step 1 by drawing [λ2,λ3,λ4] given the

observed data model. This step follows the transformation approach and Metropolis-Hastings

step given in (13). We can then bring λ1 into the sampling algorithm in step 2 when we

augment the model by introducing the latent response data, Z.

Whereas the previous algorithms have been outlined in terms of the threshold parameter

λ, we define RT-PX-PDA in terms of the transformed parameter vector α. Recall that in

the identified model where λ1 is fixed at 0, α = g(λ) with α1 = λ1 and αk = log(λk − λk−1)

for k = 2, 3, 4.. Therefore, we have a deterministic relationship between λ and α in the

identified model. In allowing λ1 to vary, we have the same functional form where α1 = λ1

and αk is the log-distance between λk and λk−1 for k = 2, 3, 4. For ease of notation, we will

refer to α1 as the varying threshold in the augmented model. The transformed threshold

vector α will consist of the three identifiable threshold values such that α = [α2,α3,α4].

Therefore, (α1, α) = g(λ) where λ = [λ1,λ2,λ3,λ4].

Reported in Table 2.5 are the effective sample sizes for RT-PX-PDA compared to RV-PX-

PDA and PDA from Table 2.3. RV-PX-PDA is the superior of the three algorithms in terms

of effective sample size, but RT-PX-PDA also outperforms PDA for all model parameters.
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Algorithm 9. RT-PX-PDA algorithm for ordinal data:

1. Draw αt = [α2, . . . ,αK ] from the conditional distribution p(α|y, βt−1).

2. Draw βt from the conditional distribution p(β|y, αt).

(a) Draw (Zt,α∗
1) conditional on (y, βt−1, αt).

i. Draw α∗
1 from p(α1|y, βt−1, αt) ∼ N(0, L).

ii. Draw Zt from p(Z|y, βt−1,α∗
1, α

t) ∼ TN(α∗
1 + Xβt−1, 1,λ∗y−1,λ

∗
y)

where λ∗ = g−1(α∗
1, α

t).

(b) Draw (βt,αt
1) conditional on (y, Zt, αt).

i. Draw αt
1 from p(α1|y, Zt, αt) ∼ TN(µα, τα, lα, uα) where

τα = (L−1 + n − 1′X(X ′X + Σ−1
β )−1X ′1)−1,

µα = τα (1′Zt − 1′X(X ′X + Σ−1
β )−1X ′Zt),

lα = max{Zt
i : i ∈ C1}, and uα = min{Zt

i : i ∈ C2}).
ii. Draw βt from p(β|y, Zt,αt

1, α
t)

∼ N((X ′X + Σ−1
β )−1X ′(Zt − 1αt

1), (X
′X + Σ−1

β )−1).

This is because extra variability is introduced in sampling the first threshold parameter, α1.

Figures 2.4 and 2.5 give the autocorrelation plots for the coefficient and threshold vectors,

respectively. We conclude that RV-PX-PDA has better mixing, and thus, faster convergence

than both alternative sampling schemes. Table 2.6 gives the autocorrelations of the sample

paths for β1 for the three algorithms we are comparing. The autocorrelations are very

similar between the two lower-performing algorithms, PDA and RT-PX-PDA. RV-PX-PDA

has the lowest autocorrelations across all lags, which coincides with it being the better of

the algorithms in terms of effective sample size.
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Table 2.5: Effective sample size for β and λ for PDA (A.5) and both PX-PDA algorithms,
(A.6 and 9), for ordinal data with five categories.

Algorithms
Parameter PDA (A.5) RV-PX-PDA (A.6) RT-PX-PDA (A.9)
β0 3,807 26,263 4,415
β1 17,114 40,824 17,407
β2 19,564 30,690 20,786
λ2 4,906 7,656 5,642
λ3 3,317 6,548 3,627
λ4 3,009 7,165 3,363

Table 2.6: Autocorrelations of the sample paths of β1 using PDA (A.5), RV-PX-PDA
(A.6), and RT-PX-PDA (A.9).

Algorithms
Lag PDA (A.5) RV-PX-PDA (A.6) RT-PX-PDA (A.9)
1 0.48 0.38 0.49
2 0.27 0.14 0.26
3 0.17 0.05 0.17
4 0.11 0.02 0.12
5 0.09 <0.01 0.09
10 0.05 <0.01 0.05
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Figure 2.4: Autocorrelation plots for the coefficient vector, β. Again, RV-PX-PDA reports
less autocorrelation within the Markov chain than both RT-PX-PDA and PDA for β0, β1,

and β2.

42



     


















     

















     


















     


















     


















     
















     


















     


















     


















Figure 2.5: Autocorrelation plots for the identified threshold vector, λ. The
autocorrelation using RV-PX-PDA is much lower than the other two algorithms for all

three identifiable thresholds.
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2.5 Data augmentation and parameter expansion for spatial probit

models

We extend data augmentation and parameter expansion strategies for binary and ordinal

response data by allowing for spatial correlation between locations within the domain of

interest. Berrett and Calder (2012) developed data augmentation and parameter expansion

algorithms for first-stage spatial probit models where the spatial correlation was assumed

for the latent response, Z(s). The first-stage model assumes

Z(s) ∼ N(X(s)β, τR) (18)

where τ is fixed to 1 and R is a valid correlation matrix. We develop data augmentation

and parameter-expanded data augmentation algorithms for second-stage spatial models for

both binary and ordinal response data. The second-stage spatial model (19) fits within the

PLMM framework and is arguably more intuitive than the first-stage spatial model (18).

Using the same notation as the first-stage spatial model where Z(s) is the augmented data,

let

Z(s) ∼ N(X(s)β + W (s), σ2I) (19)

where W (s) is a spatial random effect such that W (s) ∼ N(0,ΣW ) and ΣW = τR and σ2

is fixed to 1. The second-stage model allows for spatial correlation in the mean of the latent

variable Z(s). A further comparison between the first and second-stage models appears in

Chapter (4). We propose two new parameter-expanded data augmentation algorithms for

spatial PLMMs. The algorithms are compared through simulation in terms of Markov chain

mixing and parameter estimation.

We begin by assigning prior distributions to the parameters of the spatial covariance

of W (s). We assume an isotropic geostatistical spatial model with exponential covariance
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function. That is,

Cov(W (si), W (sj)) = τ exp− 1
φ

dij

where dij is the distance between locations si and sj, τ is the partial sill parameter and φ is

the range parameter Let R(φ, dij) denote the correlation between locations si and sj where

R(φ, dij) = Cor(W (si, W (sj) = exp− 1
φ

dij (20)

We assume a conjugate prior for τ , where p(τ) ∼ Inv. Gamma(ατ , βτ ). The range parameter,

φ, requires a Metropolis-Hastings step within MCMC and is assigned a gamma prior with

φ ∼ Gamma(αφ, βφ). For convenience, we define the fixed threshold vector for binary data

as λ = (λ0,λ1,λ2) = (−∞, 0,∞).

2.5.1 Algorithms for spatial PLMM for binary data

Algorithm 10 presents the DA-PLMM algorithm for binary data under the spatial PLMM.

This is a modification of the two-step Gibbs sampler (A.1) where the additional steps are

for the spatial parameters, τ and φ. For notational convenience, we drop the dependence on

s and also write R(φ, d) as R.

Parameter-expanded data augmentation can be utilized for spatial PLMMs by modeling

the unidentified latent variable as Z̃ ∼ N(Xβ̃ + W̃ , σ2I). Similar to the previous PX-DA

algorithms, we let

Z = 1
σ Z̃, β = 1

σ β̃, and W = 1
σW̃ .

We do not extend the random threshold parameter-expanded data augmentation algorithms

since they proved less optimal than the random variance algorithms in the non-spatial setting.

Algorithm 11 gives the PX-DA-PLMM sampling scheme for binary data under the spatial

PLMM.
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Algorithm 10. DA-PLMM algorithm for spatially correlated binary data:

1. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y).

(a) Draw Zt from p(Z|y, βt−1, W t−1, τ t−1,φt−1)
∼ TN(Xβt−1 + W t−1, I, λt

y, λt
y+1).

(b) Draw βt from p(β|y, Zt, W t−1, τ t−l,φt−1) ∼ N(bp, Bp)
where bp = (X tX + Σ−1

β )−1X t(Zt − W t−1) and Bp = (XtX + Σ−1
β )−1.

(c) Draw W t from p(W |y, Zt, βt, τ t−1,φt−1)
∼ N((I + Σ−1

W )−1(Zt − Xβt), (I + Σ−1
W )−1).

(d) Draw τ t from p(τ |y, Zt, βt, W t,φt−1)
∼ Inv. Gamma(ατ + n

2 , βτ + (W t)′(Rt)−1W )
where R has exponential correlation function (20).

(e) Draw φt from p(φ|y, Zt, βt, W t, τ t) ∝ p(φ|W t, τ t).

We propose a third algorithm for the spatial PLMMs that encompasses further parameter

expansion. Recall that the advantage of parameter expansion is that it increases variation

between sequential draws of the Markov chain. In the PX-DA algorithm, σ2 is drawn with the

latent variable Z̃ and again with the remaining model parameters. Our extended parameter-

expanded algorithms separates the “remaining model parameters” into two groups: fixed

effect parameters and random effect parameters. Then a separate σ2 is sampled with each

group and integrated over to obtain the identified fixed effect and random effect parameters,

respectively. We refer to the algorithm in the binary setting as PX2-DA-PLMM, where PX2

signifies that σ2 is expanded over twice. As in the previous PX algorithms, we denote the

preliminary draws of σ2 as (σ2)∗, and the iteration t draw as (σ2)t.

To compare DA-PLMM (A.10), PX-DA-PLMM (A.11), and PX2-DA-PLMM (A.12), we

simulate 300 locations within the unit square from a spatial PLMM. The mean of the latent

variable, Z, contains an intercept term and one covariate, as well as a spatial random effect,

W . We aim to simulate data similarly to as was done in the previous data augmentation

work of Imai and Van Dyk (2005) and Berrett and Calder (2012). The covariate, X1 is drawn
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Algorithm 11. PX-DA-PLMM algorithm for spatially correlated binary data:

1. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y).

(a) Draw (Z̃
t
, (σ2)∗) from p(Z̃, σ2|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1).

i. Draw (σ2)∗ from p(σ2|y, β̃
t−1

, W̃
t−1

, τ t−1,φt−1) ∼ p(σ2).

ii. Draw Z̃
t
from p(Z̃|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, (σ2)∗)

∼ TN(σ∗Xβt−1 + σ∗W t−1, (σ∗)2I, σ∗λt
y, σ∗λt

y+1).

Set Zt = 1
σ∗ Z̃

t
.

(b) Draw (β̃
t
, W̃

t
, τ t,φt, σ2) from p(β̃, W̃ , τ,φ, σ2|y, Z̃

t
).

i. Draw (σ2)t from p(σ2|y, Z̃
t
). See Appendix A.2.1.

ii. Draw β̃
t
from p(β̃|y, Z̃

t
, W̃

t−1
, τ t−l,φt−1, (σ2)t) ∼ N(bp, Bp) where

bp = (XtX+Σ−1
β )−1X t(Zt−W t−1) and Bp = (σ2)t(X tX+Σ−1

β )−1.

Set βt = 1
σt β̃

t
.

iii. Draw W̃
t
from p(W̃ |y, Z̃

t
, β̃

t
, τ t−1,φt−1, (σ2)t)

∼ N((I + Σ−1
W )−1(Zt − Xβt), (σ2)t(I + Σ−1

W )−1).

Set W t = 1
σt W̃

t
.

iv. Draw τ t from p(τ |y, Z̃
t
, β̃

t
, W̃

t
,φt−1, (σ2)t)

∼ Inv. Gamma(ατ + n
2 , βτ + (W t)′(Rt)−1W )

where R has exponential correlation function (20).

v. Draw φt from p(φ|y, Z̃
t
, β̃

t
, W̃

t
, τ t, (σ2)t) ∝ p(φ|W t, τ t).
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Algorithm 12. PX2-DA-PLMM algorithm for spatially correlated binary data:

1. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y).

(a) Draw (Z̃
t
, (σ2)∗) from p(Z̃, σ2|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1).

i. Draw (σ2)∗ from p(σ2|y, β̃
t−1

, W̃
t−1

, τ t−1,φt−1) ∼ p(σ2).

ii. Draw Z̃
t
from p(Z̃|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, (σ2)∗)

∼ TN(σ∗Xβt−1 + σ∗W t−1, (σ∗)2I, σ∗λt
y, σ∗λt

y+1).

Set Zt = 1
σ∗ Z̃

t
.

(b) Draw (β̃
t
, (σ2)∗) from p(β̃, σ2|y, Z̃

t
, W̃

t−1
, τ t−1,φt−1).

i. Draw (σ2)∗ from p(σ2|y, Z̃
t
, W̃

t−1
, τ t−1,φt−1). See Appendix A.2.1.

ii. Draw β̃
t
from p(β̃|y, Z̃

t
, W̃

t−1
, τ t−l,φt−1, (σ2)∗) ∼ N(bp, Bp) where

bp = (XtX+Σ−1
β )−1X t(Zt−W t−1) and Bp = (σ2)∗(X tX+Σ−1

β )−1.

Set βt = 1
σ∗ β̃

t
.

(c) Draw (W̃
t
, (σ2)t) from p(W̃ , σ2|y, Z̃

t
, β̃

t
, τ t−1,φt−1).

i. Draw (σ2)t from p(σ2|y, Z̃
t
, β̃

t−1
, τ t−1,φt−1). See Appendix A.2.1.

ii. Draw W̃
t
from p(W̃ |y, Z̃

t
, β̃

t
, τ t−1,φt−1, (σ2)t)

∼ N((I + Σ−1
W )−1(Zt − Xβt), (σ2)t(I + Σ−1

W )−1).

Set W t = 1
σt W̃

t
.

(d) Draw τ t from p(τ |y, Z̃
t
, β̃

t
, W̃

t
,φt−1, (σ2)t)

∼ Inv. Gamma(ατ + n
2 , βτ + (W t)′(Rt)−1W )

where R has exponential correlation function (20).

(e) Draw φt from p(φ|y, Z̃
t
, β̃

t
, W̃

t
, τ t, (σ2)t) ∝ p(φ|W t, τ t).
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from a Uniform(-0.5, 0.5) and the coefficient vector is (β0, β1) = (−0.5,−
√

2). The partial

sill and range parameter of the spatial covariance function are set to τ = 1.0 and φ = 0.2.

We assign prior distributions to the spatial parameters such that τ ∼ Inv. Gamma(2, 3) and

φ ∼ Gamma(1, 2). The prior distribution of τ has mean 3 and infinite variance (similar

to that assigned by Gelfand et al. (2000)). The prior distribution of φ has mean 0.5 and

is assigned such that the effective range is reasonable for the unit square. The parameter

expansion parameter, σ2, is also assigned a conjugate prior, with σ2 ∼ Inv. Gamma(4, 3).

This prior distribution required some tuning because a large variance hindered convergence

of the partial sill parameter, τ , in the PX2-DA algorithm.

Each algorithm was run for 100,000 iterations, the first 10,000 disregarded as burn-

in. Table 2.7 gives the posterior medians and 95% credible intervals for the identifiable

parameters from each of the algorithms as well as the true values from the simulation. The

true values are captured by the 95% credible intervals using all three algorithms, however

τ is overestimated and φ is underestimated. The estimability of spatial parameters from

binary response data is discussed further in Chapter 3. We compare the convergence of the

algorithms by looking at plots of parameter autocorrelation as well as computing the effective

sample size for the identifiable parameters. Figures 2.6 and 2.7 display the autocorrelation for

each model parameter across the three algorithms. While the ESS values for all cases are not

large, PX2-DA-PLMM greatly outperforms the other two algorithms in terms of independent

samples for the fixed effect coefficients, β0 and β1, as well as the partial sill parameter of the

spatial covariance function, τ (Table 2.8). This indicates more variation within the chain

for these three parameters as well as faster convergence for the PX2-DA-PLMM algorithm.

There is not much difference, however, between the algorithms in terms of the spatial range

parameter, φ. The small overall ESS for all algorithms reflects the challenges of estimating

spatial fields based on binary response data.
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Table 2.7: Posterior medians and 95% credible intervals of identifiable parameters for each
of the spatial PLMM algorithms for binary data.

Algorithms
Parameter True Value DA-PLMM (A.10) PX-DA-PLMM (A.11) PX2-DA-PLMM (A.12)
β0 −0.5 -0.86 (-1.65, 0.48) -0.84 (-3.49, -0.06) -0.60 (-1.24, 0.65)
β1 −

√
2 -1.56 (-3.61, -0.71) -1.66 (-8.06, -0.67) -1.22 (-2.24, -0.37)

τ 1 1.65 (0.58, 10.04) 1.86 (0.56,60.3) 1.40 (0.51, 10.08)
φ 0.2 0.04 (0.01, 0.94) 0.03 (0.14, 0.76) 0.05 (0.02, 1.40)

     


















     


















     


















     


















     


















     


















Figure 2.6: Autocorrelation plots for the coefficient vector, β, in the spatial PLMM for
binary data. PX2-DA algorithm reports less autocorrelation within the Markov chain than

the other two PLMM algorithms, PDA and PX-PDA, especially for β1.

Table 2.8: Effective sample size estimates for the spatial PLMM algorithms for binary data
for each of the identifiable parameters for 90,000 MCMC iterations.

Algorithms
Parameter DA-PLMM (A.10) PX-DA-PLMM (A.11) PX2-DA-PLMM (A.12)
β0 202 173 261
β1 380 168 5,805
τ 123 203 447
φ 58 94 94
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Figure 2.7: Autocorrelation plots for spatial parameters, τ and φ, in the spatial PLMM for
binary data.

2.5.2 Algorithms for spatial PLMM for ordinal data

We extend each of the algorithms developed for spatially correlated binary data to allow

for ordinal response data with 3 or more categories. Let PDA-PLMM (A.13) be the partial

data-augmented algorithm, and PX-PDA-PLMM (A.14) and PX2-PDA-PLMM (A.15) be

the two parameter-expanded partial data-augmented algorithms for the spatial PLMM for

ordinal response data.

We use the same n = 300 locations simulated in the binary case for fitting the ordinal

response model using each of the algorithms. The observed response variable, y, is ordinal

with K = 5 categories. The mean of the latent variable, Z, once again contains an intercept

term and one covariate, as well as the spatial random effect, W . The covariate data is

the same as in the binary case, although the intercept coefficient is now set to β0 = 0.5 as

opposed to β0 = −0.5 in the binary case. This was to ensure there was a sufficient number

of response values in each of the five ordinal categories. Each algorithm was run for 100,000

iterations, the first 10,000 disregarded as burn-in. The true values of the parameters as well
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Algorithm 13. PDA-PLMM algorithm for spatially correlated ordinal data:

1. Draw λt from p(λ|y, βt−1W t, , τ t,φt).

2. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y, λt).

(a) Draw Zt from p(Z|y, βt−1, W t−1, τ t−1,φt−1, λt)
∼ TN(Xβt−1 + W t−1, I, λt

y−1, λ
t
y).

(b) Draw βt from p(β|y, Zt, W t−1, τ t−l,φt−1, λt)
∼ N(bp, Bp) where
bp = (X tX + Σ−1

β )−1Xt(Zt − W t−1) and Bp = (XtX + Σ−1
β )−1.

(c) Draw W t from p(W |y, Zt, βt, τ t−1,φt−1, λt)
∼ N((I + Σ−1

W )−1(Zt − Xβt), (I + Σ−1
W )−1).

(d) Draw τ t from p(τ |y, Zt, βt, W t,φt−1, λt)
∼ Inv. Gamma(ατ + n

2 , βτ + (W t)′(Rt)−1W )
where R has exponential correlation function (20).

(e) Draw φt from p(φ|y, Zt, βt, W t, τ t, λt) ∝ p(φ|W t, τ t).

as the posterior medians and 95% credible intervals for each of the three algorithms are given

in Table 2.9. The results are very similar across the algorithms with each credible interval

capturing the true value.

Table 2.10 gives the effective sample size estimates for each parameter for each of the

algorithms. The coefficients, β0 and β1, and the threshold parameters, λ2, λ3, and λ4, all

have much higher effective sample sizes using PX2-PDA-PLMM than in PX-PDA-PLMM and

PDA-PLMM. Both parameter-expanded algorithms outperform the PDA-PLMM algorithm

for all model parameters whereas PX2-PDA-PLMM outperforms PX-PDA-PLMM for all

parameters except τ , where the effective sample sizes are close at 560 and 599, respectively.

The autocorrelation plots are shown in Figures 2.8, 2.9, and 2.10.
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Algorithm 14. PX-PDA-PLMM algorithm for spatially correlated ordinal data:

1. Draw λt from p(λ|y, βt−1W t, , τ t,φt).

2. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y, λt).

(a) Draw (Z̃
t
, (σ2)∗) from p(Z̃, σ2|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, λt).

i. Draw (σ2)∗ from p(σ2|y, β̃
t−1

, W̃
t−1

, τ t−1,φt−1, λt) ∼ p(σ2).

ii. Draw Z̃
t
from p(Z̃|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, (σ2)∗, λt)

∼ TN(σ∗Xβt−1 + σ∗W t−1, (σ∗)2I, σ∗λt
y−1, σ

∗λt
y).

Set Zt = 1
σ∗ Z̃

t
.

(b) Draw (β̃
t
, W̃

t
, τ t,φt, σ2) from p(β̃, W̃ , τ,φ, σ2|y, Z̃

t
, λt).

i. Draw (σ2)t from p(σ2|y, Z̃
t
, λt). See Appendix A.2.1.

ii. Draw β̃
t

from p(β̃|y, Z̃
t
, W̃

t−1
, τ t−l,φt−1, (σ2)t, λt) ∼ N(bp, Bp)

where
bp = (XtX+Σ−1

β )−1Xt(Zt−W t−1) and Bp = (σ2)t(X tX+Σ−1
β )−1.

Set βt = 1
σt β̃

t
.

iii. Draw W̃
t
from p(W̃ |y, Z̃

t
, β̃

t
, τ t−1,φt−1, (σ2)t, λt)

∼ N((I + Σ−1
W )−1(Zt − Xβt), (σ2)t(I + Σ−1

W )−1).

Set W t = 1
σt W̃

t
.

iv. Draw τ t from p(τ |y, Z̃
t
, β̃

t
, W̃

t
,φt−1, (σ2)t, λt)

∼ Inv. Gamma(ατ + n
2 , βτ + (W t)′(Rt)−1W )

where R has exponential correlation function (20).

v. Draw φt from p(φ|y, Z̃
t
, β̃

t
, W̃

t
, τ t, (σ2)t, λt) ∝ p(φ|W t, τ t).
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Algorithm 15. PX2-PDA-PLMM algorithm for spatially correlated ordinal data:

1. Draw λt from p(λ|y, βt−1W t, , τ t,φt).

2. Draw (βt, W t, τ t,φt) from p(β, W , τ,φ|y, λt).

(a) Draw (Z̃
t
, (σ2)∗) from p(Z̃, σ2|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, λt).

i. Draw (σ2)∗ from p(σ2|y, β̃
t−1

, W̃
t−1

, τ t−1,φt−1, λt) ∼ p(σ2).

ii. Draw Z̃
t
from p(Z̃|y, β̃

t−1
, W̃

t−1
, τ t−1,φt−1, (σ2)∗, λt)

∼ TN(σ∗Xβt−1 + σ∗W t−1, (σ∗)2I, σ∗λt
y−1, σ

∗λt
y). Set Zt = 1

σ∗ Z̃
t
.

(b) Draw (β̃
t
, (σ2)∗) from p(β̃, σ2|y, Z̃

t
, W̃

t−1
, τ t−1,φt−1, λt).

i. Draw (σ2)∗ from p(σ2|y, Z̃
t
, W̃

t−1
, τ t−1,φt−1, λ).

See Appendix A.2.1.

ii. Draw β̃
t

from p(β̃|y, Z̃
t
, W̃

t−1
, τ t−l,φt−1, (σ2)∗, λt) ∼ N(bp, Bp)

where
bp = (XtX+Σ−1

β )−1X t(Zt−W t−1) and Bp = (σ2)∗(X tX+Σ−1
β )−1.

Set βt = 1
σ∗ β̃

t
.

(c) Draw (W̃
t
, (σ2)t) from p(W̃ , σ2|y, Z̃

t
, β̃

t
, τ t−1,φt−1, λt).

i. Draw (σ2)t from p(σ2|y, Z̃
t
, β̃

t−1
, τ t−1,φt−1λt).

See Appendix A.2.1.

ii. Draw W̃
t
from p(W̃ |y, Z̃

t
, β̃

t
, τ t−1,φt−1, (σ2)t, λt)

∼ N((I + Σ−1
W )−1(Zt − Xβt), (σ2)t(I + Σ−1

W )−1).

Set W t = 1
σt W̃

t
.

(d) Draw τ t from p(τ |y, Z̃
t
, β̃

t
, W̃

t
,φt−1, (σ2)t, λt)

∼ Inv. Gamma(ατ + n
2 , βτ + (W t)′(Rt)−1W )

where R has exponential correlation function (20).

(e) Draw φt from p(φ|y, Z̃
t
, β̃

t
, W̃

t
, τ t, (σ2)t, λt) ∝ p(φ|W t, τ t).
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Table 2.9: Posterior medians and 95% credible intervals of spatial PLMM parameters for
ordinal data.

Algorithms
Parameter True Value PDA-PLMM (A.13) PX-PDA-PLMM (A.14) PX2-PDA-PLMM (A.15)
β0 0.5 0.49 (-0.08, 0.98) 0.49 (-0.23, 1.12) 0.44 (-0.10, 0.99)
β1 −

√
2 -1.77 (-2.67, -1.14) -1.73 (-2.87, -1.06) -1.67( -2.63, -0.72)

τ 1 1.25 (0.60, 3.25) 1.25 (0.57, 4.07) 1.22 (0.58, 3.69)
φ 0.2 0.06 (0.03, 0.46) 0.07 (0.03, 0.48) 0.07 (0.03, 0.43)
λ2 0.6 0.72 (0.54, 1.72) 0.71 (0.53, 1.08) 0.69 (0.50, 0.97)
λ3 1.2 1.43 (1.15, 2.12) 1.43 (1.13, 2.14) 1.40 (1.09, 1.92)
λ4 1.8 2.09 (1.72, 2.91) 2.09 (1.68, 3.12) 2.06 (1.65, 2.81)

Table 2.10: Effective sample size estimates for the parameters of the spatial PLMM for
ordinal data for 90,000 MCMC iterations.

Algorithms
Parameter PDA-PLMM (A.13) PX-PDA-PLMM (A.14) PX2-PDA-PLMM (A.15)
β0 834 1010 1096
β1 828 927 3677
τ 390 599 560
φ 107 183 196
λ2 401 557 916
λ3 288 405 594
λ4 265 379 513
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Figure 2.8: Autocorrelation plots for the coefficient vector, β, in the spatial PLMM for
ordinal data. PX2-PDA algorithm reports less autocorrelation within the Markov chain
than the other two PLMM algorithms, PDA and PX-PDA. This is especially true for

coefficient β1.
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Figure 2.9: Autocorrelation plots for spatial parameters, τ and φ, in the spatial PLMM for
ordinal data.

2.6 Discussion

When utilizing data augmentation and parameter-expanded data augmentation strate-

gies, it is important that model parameters be identifiable. It is easy to see that fitting the

parameter-expanded probit regression model naively without integrating over the variance

parameter would result in an unidentifiable model, and thus, a divergent Markov chain.

Unfortunately, this issue isn’t completely resolved even when the model is likelihood identifi-

able. For example, the low effective sample size estimates from the spatial PLMMs indicate

issues with near nonidentifiability of the model (Table 2.10). When fitting spatial mod-

els in practice, it is important to consider the trade-off between near nonidentifiability and

under-dispersion. In the extreme case when φ = 0 such that there is no spatial correlation,

ΣW = τR = τI in model (19) and the model is nonidentifiable because the marginal variance

of the latent variable, Z, is (1 + τ)I. When φ is close to 0, the model is weakly identifiable
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Figure 2.10: Autocorrelation plots for the coefficient vector, λ, in the spatial PLMM for
ordinal data.
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or near-nonidentifiable. When φ >> 0, the model is identifiable but the spatial field can be

under-dispersed. In the Bayesian framework, assigning informative priors to the parameters

of the spatial field in the model can help mediate between the two extremes. This issue will

be discussed further in Chapter 3.

Data augmentation strategies and, more recently, parameter-expanded data augmenta-

tion strategies have been shown to increase the ease of sampling from posterior distributions

while also increasing the rate of convergence and mixing when using MCMC. In situations

where posterior distributions are not known in closed form, as is the case in modeling ordinal

data, or as datasets get larger, which can occur with richer spatial data, convergence rates

become extremely important. For this reason alone, alternative methods for drawing infer-

ence are being introduced. One method in particular that has been shown to be fast and

flexible for latent Gaussian models is the integrated nested Laplace approximation approach

(INLA), which can also extend to spatial and spatiotemporal models (Rue et al., 2009). For

example, INLA can be used to fit spatial GLMMs in seconds where it can take hours to

run MCMC. Unfortunately, INLA also has its limitations as it is not available for ordinal

response data, including PLMMs, or mixture models, for example, and it is difficult to adapt

the INLA method to new model structures. Therefore, MCMC is still an obvious choice for

Bayesian model inference and increasing the efficiency of MCMC is relevant and necessary.
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CHAPTER 3

IDENTIFIABILITY

Informally, nonidentifiability is the inability of the data to distinguish between parameter

values. In simple models, it can be obvious which parameters are well-identified and which

are not, but in complex models, the distinction can be subtle. Advances in technology and

efficient computational algorithms have led to an even greater increase in complexity in sta-

tistical models causing identifiability issues across many areas of statistical modeling. Over

the past half-century, there have been distinct schools of thought regarding identifiability

and its affects on frequentist and Bayesian inference. Lindley (1972) stated “In passing, it

might be noted that unidentifiability causes no real difficulty in the Bayesian approach.”

Kadane (1974) argued that “identification is a property of the likelihood function, and thus

is the same for both frequentists and Bayesian approaches.”

In a sense, both of these statements are correct. Markov chain Monte Carlo (MCMC) al-

gorithms have been shown by many authors (e.g. Besag et al., 1995) to be justified for fitting

models that are nonidentifiable given that the samples are used only to summarize the com-

ponents of the identifiable, proper posterior. This theory is grounded in the fact that in the

Bayesian framework, inference is drawn based on both the likelihood function and the prior

distributions of the unknown parameters as opposed to only the likelihood in the classical

framework. Therefore, prior distributions can be used to assist in parameter estimation by

giving additional information to the model that is missing in the data. Furthermore, proper

prior distributions lead to proper posterior distributions meaning every parameter can be

well-estimated. Conversely, many others have also shown nonidentifiability to be a major

roadblock for Bayesians using MCMC methods (e.g. Gelfand and Smith, 1990; Gelfand and

Sahu, 1999; Eberly and Carlin, 2000). The issue is magnified when Bayesians employ vague
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and/or improper prior distributions on nonidentifiable parameters. A practical issue is that

nonidentifiability can cause high correlation between parameters in the posterior distribution

causing poor mixing in the Markov chain and slow convergence. Impropriety in the posterior

that results from a nonidentifiable parameter having an improper prior will present itself as

convergence failure of MCMC (Eberly and Carlin, 2000). Second, nonidentifiability can result

in the inability for even large sample sizes to overcome prior distributions. Philosophically,

when one assigns a noninformative prior distribution to a nonidentifiable parameter, there is

not enough information in the data or the prior distribution to appropriately draw inference

from the model (Swartz et al., 2004). These issues only add to the fact that sometimes the

nonidentifiable parameters are values of interest so only using the samples to summarize the

identifiable, proper posterior is of little use.

In this chapter, we begin by discussing identifiability in a general context as it applies to

frequentists and Bayesians alike. This includes defining and comparing the terms likelihood

identifiability and Bayesian identifiability. In Section 3.2 we introduce nonidentifiability in

latent variable models, with focus on linear models and linear mixed models. Section 3.2.1

gives general methods for investigating parameter identifiability. In Section 3.2.2 we apply a

mapping approach for checking identifiability in the specific case of latent variable Gaussian

process models for ordinal response data. We investigate identifiability in latent variable

models for spatially correlated binary and ordinal response data in Section 3.3. In Section

3.4 we propose a new parameterization for fitting an exponential covariogram using MCMC

and evaluate it against the current parameterization via simulation. The chapter concludes

with a discussion in Section 3.5.
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3.1 Identifiability, as it applies to frequentists and Bayesians

We begin by stating a general definition of identifiability first given in Basu (1983).

Definition 1. Let Y be an observable random variable with distribution function pθ indexed

by a parameter θ where θ ∈ Ω. Here, θ could be scalar or vector-valued. We say that θ is

nonidentifiable for Y if there is at least one pair (θ, θ′), θ *= θ′, where θ and θ′ both belong

to Ω such that pθ(y) = pθ′(y) for all y. In the contrary case we shall say θ is identifiable.

Therefore, a parametric statistical model is said to be identified if the distribution pθ(y) is

generated by a unique value, θ. When a model is not identified, the parameters of interest

are not unique and therefore cannot be used for drawing inference. As models become

more complex with higher-dimensional parameter spaces, identifiability becomes much more

difficult to ascertain (see Section 3.2.1 for an example).

Another way of illustrating identifiability is in the context of conditional independence

(Dawid, 1979). Casting identifiability in the light of conditional independence closely relates

to the Bayesian paradigm of posterior distributions. Letting Y be from a distribution defined

by the pair of parameters (θ1, θ2), we interpret (Y , θ2)|θ1 as the distribution of Y being

determined solely by θ1, where θ2 is redundant given θ1. Here, θ1 can be referred to as a

sufficient parameter, which is similar in context to sufficient statistics (Barankin, 1960). This

implies that once we have learned about θ1 from the data, there is nothing more we can learn

about θ2 beyond what we already know. Therefore, θ2 is not identified by the data.

In the Bayesian framework we have the likelihood function, L(θ1, θ2; y), where y is the

observed data and assign prior distributions to θ1 and θ2. The posterior of θ2 is written as

p(θ2|y, θ1) ∝ L(θ1, θ2; y)p(θ2|θ1)p(θ1). (21)
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We say θ2 is not likelihood identifiable if and only if L(θ1, θ2; y) can be written free of θ2. As

is the case when θ1 is a sufficient parameter such that (Y , θ2)|θ1, the posterior of θ2 is

p(θ2|y, θ1) ∝ p(θ2|θ1). (22)

This implies that the conditional distribution of the redundant parameter, θ2, given the

sufficient parameter, θ1, is the same in the posterior distribution as in the prior.

There is a subtle difference when we switch from likelihood identifiability to Bayesian

identifiability. If there exists a one-to-one transformation from (θ1, θ2) to (φ1,φ2) such that

φ2 is not identifiable in that (22) holds when we replace θ1 and θ2 by φ1 and φ2, then we say

the model is not Bayesian identifiable (Gelfand and Sahu, 1999). Whereas models that are

not likelihood identifiable can be more obvious to detect, Bayesian nonidentifiability signifies

that it is not a sufficient condition for parameter identifiability for both θ1 and θ2 to be in

the likelihood, L(θ1, θ2; y). At the risk of oversimplifying, the distinction between likelihood

nonidentifiability and Bayesian nonidentifiability is that θ2 is likelihood nonidentifiable if the

likelihood function is free of θ2 and Bayesian nonidentifiable if the posterior distribution of

θ2 is free of the data, y.

Bayesian hierarchical models (BHMs) are a specific collection of models that can suffer

from Bayesian nonidentifiability since they are often written as

p(φ1,φ2|y) ∝ L(φ1; y)p(φ1|φ2)p(φ2).

Therefore, the posterior of φ2 follows (22) in that

p(φ2|φ1, y) ∝ p(φ2|φ1).

Swartz et al. (2004) say “nonidentifiability according to Basu (1983) exists for any hierarchical

model.” Gelfand and Sahu (1999) consider models that are not Bayesian identifiable to
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be contained in a class of “weakly identifiable” models. Extending the formal definition

of identifiability given in (1), we say that θ is near nonidentifiable, or weakly identifiable,

if pθ(y) ≈ pθ′(y) for all y and some suitable metric (Swartz et al., 2004). Therefore, near

nonidentifiability occurs when the likelihood surface is flat such that changes in the parameter

θ result in insignificant changes in the likelihood. The vagueness of this terminology suggests

an area for future research. The implications of nonidentifiability discussed above extend

to near nonidentifiability and can therefore impede accurate parameter inference. Near

nonidentifiability is common in models with random effects when the model has a high-

dimensional parameter space.

Weakly identifiable models make up an interesting class of models because they still have

the potential to provide useful statistical inference when fitted well. Seeing that parameter

identifiability is not an artifact of prior distributions, weakly identifiable parameters can

be assigned informative prior distributions that maximize Bayesian learning. For example,

Gelfand and Sahu (1999) suggest vague prior distributions when fitting a partially-identified

Gaussian linear model with design matrix less than full rank. In this case, convergence rates

greatly improve as the variance of the prior distribution of the coefficient, β, goes to infinity.

Informally, Bayesian learning is the ability to gain information about a parameter from the

data beyond that which stems from the prior distribution. It results from comparing the pa-

rameter’s posterior distribution to its prior distribution. An important thing to understand,

however, is that nonidentifiability, and thus, weak identifiability, does not preclude Bayesian

learning (e.g. Xie and Carlin, 2006; Gelfand and Sahu, 1999). Whereas nonidentifiability

is such that p(θ2|y, θ1) = p(θ2|θ1), this is a weaker condition than p(θ2|y) = p(θ2), which

implies no Bayesian learning. Therefore, in a Bayesian framework one can still fit mod-

els that contain nonidentifiable parameters when Bayesian learning of the nonidentifiable

parameters exists. Xie and Carlin (2006) propose methods for quantifying the amount of

potential information one can obtain about unidentifiable or weakly identifiable parameters

in the context of Gaussian hierarchical linear models.
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In order to resolve nonidentifiability, one must incorporate non-data-based information

into the model. Whereas frequentists do this by instilling constraints on the parameter

space, Bayesians have the additional option of placing proper prior distributions on the

unidentified parameters. Prior distributions created specifically for a particular parameter,

e.g., spatial range parameter, can lead to suitable inference of models fitted with Bayesian

nonidentifiable parameters. Further, prior distributions also influence the level of Bayesian

learning. Unfortunately, there are cases when even well-assigned priors are not able to assist

in fitting nonidentifiable models. This results in the posterior and prior distributions being

identical meaning that all information about the parameter comes from the prior distribution

as opposed to learning from the data.

3.2 Identifiability of non-spatial latent variable models

Latent variable models, and specifically, latent Gaussian models, have become a popular

class of models. They are very flexible models that can be fitted within a GLM framework

for various types of data and can extend to GLMMs when the model contains additional ran-

dom effects. Similarly, latent variable models can be used when fitting probit linear models

(PLMs) and probit linear mixed models (PLMMs). In spatial statistics, for example, latent

Gaussian models can be used to model a Gaussian random field. Model identifiability comes

into question when fitting latent variable models since latent variables are not observed and

only inferred by the model. The issue compounds when fitting multivariate and multilevel

latent variable models (see Chapter 5 for an example of such a model). We are interested

in investigating identifiability in a subset of latent Gaussian models used for modeling mul-

tivariate ordinal response data. In particular, we assume the multivariate processes have

spatial correlation which we would like to capture within the latent variable model.

To first explore identifiability in latent variable models, we consider a common factor

model or one factor model for ordinal response data. This is a simplified version of the model

we propose in Chapter 5. Suppose the response variable, Y (s) at location s is multivariate
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ordinal and assumed to be generated by an underlying continuous latent variable, Z(s). We

define the jth continuous latent variable for location si as Zj(si).

We model the continuous latent variable as

Zj(si) = θj + ωjW (si) + εj(si) (23)

where W (si)
iid∼ N(η,φ) is the common factor with variable-specific factor loadings ωj , and

εj(si)
iid∼ N(0, σ2

j ).

Dropping the dependence on s for notational ease, we denote Zj(si)j as Zij, W (si) as Wi,

and εj(si) as εij . Notice that this model is simplified by assuming the mean of Wi is constant

for all locations and the variance is set to a scalar parameter, φ, as opposed to a valid spatial

covariance function. To show that this model is not identifiable, let W ∗
i = aWi + b. Then,

write

Zij = θj + ωjWi + εij

= θj + ωj
W ∗

i − b

a
+ εij

=

(
θj −

ωjb

a

)
+
ωj

a
W ∗

i + εij

= θ∗j + ω∗
j Wi + εij

where the parameters of interest are now written as θ∗j = θj − ωjb
a and ω∗

j = ωj

a . Therefore,

the model is not identifiable because different parameter value sets, {θj ,ωj} and {θ∗j ,ω∗
j},

generate the same reduced-form distribution of Zij .

3.2.1 Approaches for showing identifiability

As conveyed in the motivating example with the common factor model (23), showing

a model is nonidentifiable can often be done in just a few lines. Showing that a model is

identifiable, on the other hand, is generally much more complicated. To our knowledge,
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there does not exist a general framework for showing a model to be identifiable. The main

reason being that identifiability is very model-specific. Nevertheless, there do exists some

basic guidelines that modelers can extend or modify to check identifiability in their model.

Rothenberg (1971) derive several identifiability criteria in the case of general parametric

models. His method is based on the information matrix of classical mathematical statistics.

Here, the information matrix is a measure of the amount of information about the unknown

parameters that is available in the sample data. The lack of sufficient information in the

observed data directly results in a lack of identifiability in the model. The information matrix

method is arguably not feasible in practice, however, since most complex models are usually

analytically intractable.

Wald (1950) propose a different method for checking parameter identifiability that focuses

on a mapping between structural and reduced-form parameters. Structural parameters are

the parameters that are of scientific interest and defined when writing down the model.

Reduced-form parameters are the parameters that can be estimated from the data. Reduced-

form parameters can often be defined as functions of structural parameters. For example, in

Section 3.1, we defined a simple model where Y ∼ N(θ1 +θ2, σ2). The structural parameters

are those defined in the model, θ1, θ2, and σ2. However, we know that only the sum, θ1 + θ2,

and the variance, σ2, are identifiable. Therefore, our reduced-form parameters are φ and σ2

where φ = θ1 + θ2. Since the two sets of parameters differ, we need to be conscious of the

ability of the model in drawing inference on the structural model we impose. When a model

is identifiable, we can draw inference on the scientific (structural) parameters of interest

through the reduced-form parameters. Thus, the observed data are able to inform inference

on the structural parameters.

Dupacová and Wold (1982) apply the mapping approach to structural equation models

with latent variables. This method was developed and generally used for models where the

observable random variable is Gaussian because they can be defined in entirety by their

1st and 2nd moments. The reduced-form parameters are the mean and variance-covariance
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parameters of the reduced-form distribution. The mapping approach is extended to models

with dichotomous and ordinal response models generated by Gaussian latent variables by

Skrondal and Rabe-Hesketh (2004, Chapter 5). We begin by first outlining their method

and then apply it to our multivariate multilevel latent variable model from Chapter 5.

Define the fundamental parameter vector of length T as θ ∈ A and the reduced-form

parameter vector of length S as ξ ∈ A′. We then define the mapping functions between the

fundamental and reduced parameter sets as

ξs = hs(θ) for 1 ≤ s ≤ S

where the mapping functions, hs(·), are continuously differentiable known functions. Lemma

1 gives a necessary but not sufficient condition for parameter identifiability (Skrondal and

Rabe-Hesketh, 2004, Chapter 5).

Lemma 1. The number of reduced-form parameters S be greater than or equal to the number

of unknown fundamental parameters in the model.

The probability distribution of estimable variables depends on the T -dimensional fundamen-

tal parameter vector, θ, only through the S-dimensional reduced-form parameter vector, ξ.

For all θ ∈ A, the probability distribution is such that

f(y|X, θ) = f ∗(y|X, h1(θ), h2(θ), . . . , hS(θ)) = f ∗(y|X, ξ).

We study the identifiability of θ through the characteristics of the mapping of θ → ξ. For

some fundamental parameter vector θo that generates reduced parameter vector ξo, we can

define ξo
s = hs(θ

o) for 1 ≤ s ≤ S. Then we say that θo is identifiable if and only if θo is

the unique solution of the equations ξo
s = hs(θ) for 1 ≤ s ≤ S. Therefore, the uniqueness of

the solutions to the systems of equations hs(θ), 1 ≤ s ≤ S, determines identifiability of the

fundamental parameters.
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We investigate the mapping between θ → ξ by computing the Jacobian matrix, [J(θ)],

defined as

[J(θ)] =

[
dhs

dθt
, 1 ≤ s ≤ S, 1 ≤ t ≤ T

]
.

The Jacobian matrix contains the derivative of each mapping function hs(·) with respect to

each of the T fundamental parameters of θ. Therefore, the dimension of the Jacobian is

S × T . As stated above, a necessary condition for parameter identifiability is that S ≥ T .

When the number of columns of [J(θ)] is greater than the number of rows, the model is

not identifiable. Shown by Skrondal and Rabe-Hesketh (2004, p. 128), a unique solution θo

exists if and only if the rank[J(θ)] = T .

3.2.2 Applying mapping approach to multivariate multilevel latent variable

model

To apply the mapping method to our multivariate multilevel latent variable model for

ordinal response data, we first need to determine the fundamental parameters. Then, we

must deduce the reduced-form parameters of the model and derive the mapping functions be-

tween the two. One of our model assumptions is that there exists an underlying multivariate

Gaussian latent variable that is being thresholded into the multivariate ordinal response vari-

ables. Therefore, the reduced-form model parameters are the means and variance-covariance

parameters that can be computed from the observed data through the assumed underlying

multivariate Gaussian distributions.

The observed multivariate ordinal response is y = [y1, . . . , yJ ], where the rows of y are of

the form yi = [yi1, . . . , yiJ ] and the columns are of the form yj = [y1j , . . . , ynj]′. The subscript

i denotes locations, where we dropped writing si for notational convenience, and subscript

j denotes metric. We let n be the number of observed locations, J be the number of metrics

in the response, and K be the number of ordinal categories such that yij ∈ {1, . . . , K}. We
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will derive model identification for the case where J = 3 and K = 5, however the methods

can be generalized to other values of J and K.

3.2.2.1 Discerning the fundamental and reduced-form parameters

The deterministic relationship between the observable ordinal response variable Yij and

the latent continuous random variable Zij, for i = 1, . . . , n and j = 1, . . . , 3 is

Yij =






1 −∞ < Zij ≤ λ1

2 0 < Zij ≤ λ2

3 λ2 < Zij ≤ λ3

4 λ3 < Zij ≤ λ4

5 λ4 < Zij < ∞

We assume Zij is the underlying continuous latent Gaussian variable that is generating the

ordinal response, Yij. We let Zij = θj + ωjWi + εij where Wi
iid∼ N(η,φ) and εij

iid∼ N(0, σ2
j ).

The threshold parameter vector, λ, is constrained such that −∞ = λ0 ≤ λ1 ≤ . . .λK = ∞.

Albert and Chib (1993) define this binning approach for ordered categorical data and require

one restriction on bin boundaries to ensure identifiability. This constraint can be shown to

be necessary by letting λ0 = −∞ and λK = ∞, where K is the number of categories of the

ordinal response. If the remaining threshold parameters, λk, for k = 1, . . . , (K −1) are to be

estimated, we are unable to identify the (J × 1)-dimension vector of metric-specific random

effects, θ. By writing out the marginal probability

P (Yij = 1) = P (Zij < λ1) = Φ



λ1 − (θj + ωjη)√
ω2

jφ+ σ2
j



 .

and letting λ∗1 = λ1 + c for c *= 0 and θ∗j = θj − c, then
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Φ



λ
∗
1 − (θ∗j + ωjη)√
ω2

jφ+ σ2
j



 = Φ



λ1 − (θj + ωjη)√
ω2

jφ+ σ2
j



 .

This result holds for all j = 1, . . . J since we assume the threshold vector is not metric-

specific. Therefore, without loss of generality, we set λ1 = 0. There are T = 14 remaining

parameters to be estimated which define the fundamental parameter vector, θ. That is,

θ = {λ2,λ3,λ4, θ1, θ2, θ3,ω1,ω2,ω3, σ
2
1, σ

2
2, σ

2
3, η,φ}.

Our reduced-form parameter vector, ξ, contains the means and variance-covariance values

of our latent continuous random variables Zij. Since the observable response variables, Y ,

are ordinal and can be defined using the latent continuous variables, Z, and threshold vector,

λ, we begin by computing the following:

P (Yij = 1) = P (Zij ≤ 0) = P



Zij − (θj + ωjη)√
ω2

jφ+ σ2
j

≤
−(θj + ωjη)√
ω2

jφ+ σ2
j





= P



Z∗
ij ≤

−(θj + ωjη)√
ω2

jφ+ σ2
j





where Z∗
ij is standard normal and j = 1, . . . , 3. Therefore, we can show

P (Yij = 1) = Φ



−(θj + ωjη)√
ω2

jφ+ σ2
j



 (24)

where Φ is the cumulative distribution function of a standard normal random variable.

Likewise, we can write out
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P (Yij = 2) = P (Zij ≤ λ2) − P (Zij ≤ 0) = Φ



λ2 − (θj + ωjη)√
ω2

jφ+ σ2
j



− Φ



−(θj + ωjη)√
ω2

jφ+ σ2
j



 . (25)

These same calculations can be made for P (Yij = 3) and P (Yij = 4). Lastly,

P (Yij = 5) = 1 − Φ



λ4 − (θj + ωjη)√
ω2

jφ+ σ2
j



 . (26)

We define the mean and threshold reduced-form parameters for j = 1, . . . , J using (24), (25),

and (26). From (24), the mean for each metric j is given by

µj =
θj + ωjη√
ω2

jφ+ σ2
j

.

We discern the thresholds from (25) and (26) as

τ2j =
λ2√

ω2
jφ+ σ2

j

τ3j =
λ3√

ω2
jφ+ σ2

j

τ4j =
λ4√

ω2
jφ+ σ2

j

The correlation matrix of the latent response variables is
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R(θ) =





1

c21 1

c31 c32 1




=





1

ω2ω1φ√
ω2

2φ+σ2
2

√
ω2

1φ+σ2
1

1

ω3ω1φ√
ω2

3φ+σ2
3

√
ω2

1φ+σ2
1

ω3ω2φ√
ω2

3φ+σ2
3

√
ω2

2φ+σ2
2

1





where c21 = corr(Z2, Z1), for example. In this model, there is only correlation between

metric since the latent variables are assumed independent within metric. Our reduced-form

parameter vector is given by

ξ = {µ1, µ2, µ3, τ21, τ22, τ23, τ31, τ32, τ33, τ41, τ42, τ43, c21, c31, c32}

Notice that the length of ξ is S = 15 and the number of fundamental parameters is

T = 14. While it is a necessary condition that for the model to be identifiable, S ≥ T , this

is not a sufficient condition. We know that a simpler version of this model is not identifiable

from the common factor model example at the beginning of Section 3.2.

3.2.2.2 Imposing parameter constraints

To achieve parameter identifiability, Skrondal and Rabe-Hesketh (2004) propose setting

the mean and variance of the common factor, Wi, to 0 and 1, respectively. Whereas our

initial goal is to establish parameter identifiability for the general model with Wi ∼ N(η,φ),

our main objective is to show identifiability in a complex common factor model containing

covariates and a correlated error term. Therefore, we do not wish to fix the parameters of the

distribution of Wi in order for identifiability in the general model to be naturally extended to

the complex model. We begin to establish identifiability of the model parameters through a

series of steps. The first step is to set ω1 = 1 to establish a benchmark relationship between

the latent response, Zij, and the latent variable, or common factor, Wi. We will show that

this is not sufficient to ensure identifiability. Our second step is to fix one of the variance

parameters. Without loss of generality, we set σ2
1 = 1. We argue that while these parameter

73



restrictions do not make the general model identifiable, they aid in establishing identifiability

in the complex model.

The factor-loading parameter vector, ω, contains metric-specific values that relate the la-

tent variable, W , to each of the response variables. Since ω is only necessary for multivariate

response models, the model is able to identify only J − 1 variables of the (J × 1)-dimension

vector, ω. This can be seen by letting ω∗
j = cωj and W ∗ = 1

cW for c *= 0. Then ωjW

= ω∗
j W

∗ and the model does not change. By fixing one of the factor loadings, the model

establishes a base relationship between one of the response variable and the latent variable

W . This is similar to what is done in analysis of variance (ANOVA) where for a model with

g groups, only g − 1 group effects are identifiable when there exists an intercept or grand

mean term in the model. Without loss of generality, we set ω1 = 1. The remaining factor

loadings, ωj, for j = 2, . . . , J can adjust to estimate the metric-specific relationships between

the latent variable Zj and W .

Because Zij is latent, it can be fixed to have any scale. That is, letting σ∗j = cσj , λ∗4 = cλ4,

θ∗j = cθj and η∗ = cη,

Φ

(
λ∗4 − (θ∗j + ωjη∗)

σ∗j

)
= Φ

(
λ4 − (θj + ωjη)

σj

)
.

For a univariate response variable, we would fix the scale parameter σ2 = 1. Since our model

is multivariate, by fixing one of the scale parameters, namely σ2
1 = 1, the conditional variance

of Zij, σ2
j , can be uniquely estimated for j = 2, . . . , J.

After fixing both ω1 = 1 and σ2
1 = 1, we compute the Jacobian matrix

[J(θ)] =

[
dhs

dθt
, 1 ≤ s ≤ 15, 1 ≤ t ≤ 12

]
.

Let v1 = φ+ 1, v2 = ω2
2φ+ σ2

2 , and v3 = ω2
3φ+ σ2

3 . The Jacobian matrix is
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0 0 0 1
√

v1
0 0 0 0 0 0 1

√
v1

−
1
2 (θ1+η)

(φ+1)
3
2

0 0 0 0 1
√

v2
0

ησ2
2−θ2ω2φ

(v2)
3
2

0
−

1
2
(θ2+ω2η)

(v2)
3
2

0
ω2
√

v2

−
1
2

ω2
2(θ2+ω2η)

(v2)
3
2

0 0 0 0 0 1
√

3
0

ησ2
3−θ3ω3φ

(v3)
3
2

0
−

1
2 (θ3+ω3η)

(v3)
3
2

ω3
√

v3

−
1
2 ω2

3(θ3+ω3η)

(v3)
3
2

1
√

v1
0 0 0 0 0 0 0 0 0 0

−
1
2 λ2

(v1)
3
2

1
√

v2
0 0 0 0 0

−λ2ω2φ

(v2)
3
2

0
−

1
2 λ2

(v2)
3
2

0 0
−

1
2 ω2

2λ2

(v2)
3
2

1
√

v3
0 0 0 0 0 0

−λ2ω3φ

(v3)
3
2

0
−

1
2

λ2

(v3)
3
2

0
−

1
2

ω2
3λ2

(v3)
3
2

0 1
√

φ+1
0 0 0 0 0 0 0 0 0

−
1
2

λ3

(φ+1)
3
2

0 1
√

v2
0 0 0 0

−λ3ω2φ

(v2)
3
2

0
−

1
2 λ3

(v2)
3
2

0 0
−

1
2 ω2

2λ3

(v2)
3
2

0 1
√

v3
0 0 0 0 0

−λ3ω3φ

(v3)
3
2

0
−

1
2 λ3

(v3)
3
2

0
−

1
2 ω2

3λ3

(v3)
3
2

0 0 1
√

φ+1
0 0 0 0 0 0 0 0

−
1
2 λ4

(φ+1)
3
2

0 0 1
√

v2
0 0 0

−λ4ω2φ

(v2)
3
2

0
−

1
2 λ4

(v2)
3
2

0 0
−

1
2 ω2

2λ4

(v2)
3
2

0 0 1
√

v3
0 0 0 0

−λ4ω3φ

(v3)
3
2

0
−

1
2 λ4

(v3)
3
2

0
−

1
2 ω2

3λ4

(v3)
3
2

0 0 0 0 0 0
σ2
2φ

(v2)
3
2 (v1)

1
2

0
−

1
2 ω2φ

(v2)
3
2 (v1)

1
2

0 0
ω2(σ2

2+ 1
2 φσ2

2+ 1
2 ω2

2φ)

(v1)
3
2 (v2)

3
2

0 0 0 0 0 0 0
σ2
3φ

(v3)
3
2 (v1)

1
2

0
−

1
2 ω3φ

(v3)
3
2 (v1)

1
2

0
ω3(σ2

3+ 1
2 φσ2

3+ 1
2 ω2

3φ)

(v1)
3
2 (v3)

3
2

0 0 0 0 0 0
ω3φσ2

2

(v3)
1
2 (v2)

3
2

ω2φσ2
3

(v3)
3
2 (v2)

1
2

−
1
2 ω3ω2φ

(v3)
1
2 (v2)

3
2

−
1
2 ω3ω2φ

(v3)
3
2 (v2)

1
2

0
ω3ω2(σ2

3σ2
2+1

2 ω2
2φσ2

3+1
2 ω2

3φσ2
2)

(v3)
3
2 (v2)

3
2





[15×12]

(27)
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dµ1
dθ1

dµ1
dθ2

dµ1
dθ3

dµ1
dη

dµ2
dθ1

dµ2
dθ2

dµ2
dθ3

dµ2
dη

dµ3
dθ1

dµ3
dθ2

dµ3
dθ3

dµ3
dη

...
...

...
...

dc32
dθ1

dc32
dθ2

dc32
dθ3

dc32
dη





=





1√
φ+1

0 0
1√
φ+1

0
1√

ω2
2φ+σ2

2

0
ω2√

ω2
2φ+σ2

2

0 0
1√

ω2
3φ+σ2

3

ω3√
ω2

3φ+σ2
3

...
...

...
...

0 0 0 0





[15×4]

(28)

It can be seen that the Jacobian matrix in (27) is not full rank. The matrix in (28) focuses

on four of the columns of the full Jacobian matrix (27), showing that a linear combination

of the first 3 columns is equal to the fourth column. Therefore, rank[J(θ)] = 11, which is

less than the number of fundamental parameters in the model.

We can understand the lack of parameter identifiability by examining the marginal distri-

bution of Zij. The expected value of the marginal distribution is E(Zij) = θj+ωjη. For metric

j = 1, E(Zi1) = θ1 +η. Letting θ∗1 = θ1 +c and η∗ = η−c for c *= 0, E(Zi1) = θ1 +η = θ∗1 +η∗

and the model stays the same. Therefore we would need to fix either one of the J parameters

in the vector θ or the mean of the common factor, η, to a known constant to preserve pa-

rameter identifiability for the general model where Wi
iid∼ N(η,φ). For ease of interpretation

and metric comparison, we would fix η = 0.

3.2.2.3 Extension to the proposed model for wetland health

The model proposed in (57) of Chapter 5 aims to model the common factor W as a

latent Gaussian process. We assume the latent Gaussian process has spatial correlation as

well as location-specific covariates in the mean. That is, W (s) ∼ GP (X(s)β,ΣW ) where

ΣW is a spatial covariance matrix. Unfortunately, the mapping approach does not easily

apply to to this model because the mean, threshold, and correlation parameters defined in

Section 3.2.2.1 would be location-metric-specific. However, we can deduce identifiability of

the coefficient vector, β, by writing out a non-spatial form of the model in matrix form. We
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postpone investigating identifiability of the latent spatial process parameters until Section

3.3.

Assume a simpler, non-spatial model where W (s) ∼ GP (X(s)β,φI) and φ is the vari-

ance parameter. The identifiability issue between parameter vector θ and η shown in Section

3.2.2.2 is avoided by eliminating the 1-vector in X(s). This can be shown through the fol-

lowing example. Define Zj(si) = θj +ωjW (si) + εij where i = 1, . . . , 4 and j = 1, 2. Assume

further that εij
iid∼ N(0, σ2

j ) where σ2
1 = 1 and W (si) ∼ N(X(si)′β,φ). Fixing ω1 = 1, we

write the conditional distribution of Z(s) in matrix notation as





Z1(s1)

Z1(s2)

Z1(s3)

Z1(s4)

Z2(s1)

Z2(s2)

Z2(s3)

Z2(s4)





=





1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1








θ1

θ2



+





W (s1) 0

W (s2) 0

W (s3) 0

W (s4) 0

0 W (s1)

0 W (s2)

0 W (s3)

0 W (s4)








1

ω2



+





ε11

ε21

ε31

ε41

ε12

ε22

ε32

ε42





The marginal distribution of Zj(si) is such that

Zj(si) ∼ N(θj + ωjX(si)
′β, σ2

j + ω2
jφ) for i = 1, . . . , 4, and j = 1, 2.

Since the lack of identifiability shown in Section 3.2.2.2 was due to θ and η, both parameters

of the mean of Z(s), we will focus on the expected value of the marginal distribution of

Z(s). We write the expected value of Z(s) as
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E









Z1(s1)

Z1(s2)

Z1(s3)

Z1(s4)

Z2(s1)

Z2(s2)

Z2(s3)

Z2(s4)









=





1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1








θ1

θ2



+





X(s1) 0

X(s2) 0

X(s3) 0

X(s4) 0

0 X(s1)

0 X(s2)

0 X(s3)

0 X(s4)








β

βω2





This can be rewritten to look like a mixed effects model or a multiple regression model with

interaction terms. In this case, the model would be

E









Z1(s1)

Z1(s2)

Z1(s3)

Z1(s4)

Z2(s1)

Z2(s2)

Z2(s3)

Z2(s4)









=





1 0 X(s1) 0

1 0 X(s2) 0

1 0 X(s3) 0

1 0 X(s4) 0

0 1 0 X(s1)

0 1 0 X(s2)

0 1 0 X(s3)

0 1 0 X(s4)









θ1

θ2

β

βω2





(29)

Written this way, it is easy to see that the columns of the design matrix are linearly indepen-

dent. Therefore, no column of the design matrix can be written as a linear combination of

the other columns. In the model where the W (si)
iid∼ N(η,φ), for i = 1, . . . , 4, the expected

value of the marginal distribution of Z(s) would be written as
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E









Z(s1)1

Z(s2)1

Z(s3)1

Z(s4)1

Z(s1)2

Z(s2)2

Z(s3)2

Z(s4)2









=





1 0 η 0

1 0 η 0

1 0 η 0

1 0 η 0

0 1 0 η

0 1 0 η

0 1 0 η

0 1 0 η









θ1

θ2

1

ω2





(30)

It is clear that not all η, θ1, θ2, and ω2 are identifiable since the design matrix in (30) is

not full rank. Therefore, (29) shows that the parameters θ1, θ2, β, and ω2 are identifiable

when W (s) ∼ N(X(s)β,φI). This easily extends to our model with multivariate ordinal

response data where i = 1, . . . , n and j = 1, . . . , J .

3.3 Identifiability of spatial random effect models

In this section, we investigate parameter identifiability in spatial probit linear mixed mod-

els (PLMMs) for binary and ordinal response data. We focus on continuous spatial random

effects of the form W (s) ∼ GP (X(s)β,ΣW ) where ΣW is a spatial covariance matrix. Our

analysis is based on the asymptotic theory of parameter identifiability in GLMMs by Zhang

(2004) and the empirical results of linear mixed models (LMMs) for continuous data with

spatially correlated errors by Irvine et al. (2007). We compare the signal in the likelihood

function of PLMMs for the spatial parameters by simulating binary, ordinal, and continuous

response data for different parameter values for the spatial covariance function. We relate

our results of identifiability in spatial PLMMs to spatial GLMMs.
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3.3.1 Asymptotics for geostatistical models

There exists a long history and extensive literature of spatial modeling for lattice data

using a Markov random field specification introduced by Besag (1974). Markov random

fields are well suited for both likelihood and Bayesian inference, particularly simulation based

inference such as Gibbs sampling. A disadvantage of these models is that the off-diagonal

entries of the precision matrix measuring correlation between pairs is defined through a

neighborhood structure and must be pre-specified. Also, Markov random fields have no

implied spatial process on the domain (Gelfand et al., 2000). In contrast, geostatistics is

a field of statistics that models spatial variation over a continuous spatial region. In some

applications, continuous spatial processes may be more appropriate when the main objective

is spatial interpolation. Continuous spatial fields have their disadvantages as well. Their

biggest drawback is that both likelihood or Bayesian inference require matrix inversion for

an n × n matrix where n is the sample size to evaluate the density of the spatial random

field. This inversion can be slow, especially as the the number of locations in the sample

increases. Approximation and rank-reducing methods have drawn much attention recently

as ways of avoiding matrix inversion. Integrated nested Laplacian approximations (INLA)

is one approach for approximating Bayesian posteriors and Gaussian random fields (Rue

et al., 2009). Other methods include fixed-rank kriging (Cressie and Johannesson, 2008),

covariance tapering (Furrer et al., 2006), and Gaussian predictive process (Banerjee et al.,

2008).

We begin by discussing relevant work in the area of parameter estimation of geostatistical

spatial models. The majority of the literature in geostatistical spatial models pertains to

continuous response data, such as Gaussian response data, or count data, such as that

generated from a Poisson model. Zhang (2004) investigates the consistency of estimators

in model-based geostatistics, focusing on spatial GLMMs. He defines the spatial GLMM as

follows:
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1. Let {W (s), s ∈ Rd} be a second-order stationary Gaussian process with mean 0.

2. Conditional on {W (s), s ∈ Rd}, the observable random variables {Y (s), s ∈ Rd} are

mutually independent.

3. Assuming Y (s) follows a GLM with distribution specified by the conditional mean

µ(s) = E(Y (s)|W (s)), g(µ(s)) = X(s)β + W (s) for some link function g, covariate

vector X(s) and coefficient vector β.

Zhang (2004) derives results for the Matérn class of covariance functions of which exponential

is a special case. The exponential covariogram is defined as

Cov(W (si), W (sj)) = τ exp− 1
φ

dij (31)

where dij is the distance between locations si and sj. Zhang (2004) uses properties of equiv-

alence of probability measures to show that while neither parameter τ or φ in a spatial

GLMM with exponential covariance is consistently estimable, the quantity τ/φ is consis-

tently estimable. Stein (1990) showed that predictions obtained from an incorrect covari-

ance function are asymptotically optimal if the incorrect covariance function is compatible

with the correct covariance function. This means that the difference between predictions ob-

tained from an incorrect exponential covariance function and predictions obtained using the

correct exponential covariance function goes to 0 asymptotically for compatible covariance

functions. Two covariance functions are compatible if the probability measures of the two

processes have equal means functions and the covariance functions are mutually absolutely

continuous (Stein, 1988). Further, stationary covariance functions are compatible if they

behave similarly at the origin (Stein, 1988).

It is worth mentioning that spatial asymptotics are classified into two groups: increasing-

domain asymptotics and fixed-domain, or infill, asymptotics. Increasing-domain is such that

the domain of the spatial field increases as the amount of data increases. Fixed-domain
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refers to spatial fields with fixed boundaries such that increases in data results in higher

density sampling. Consistent estimators of τ and φ are only available under increasing-

domain asymptotics (Mardia and Marshall, 1984). Using simulation, Zhang (2004) shows

that predicted values and prediction variances at unobserved locations of a binary response

variable modeled with an exponential covariance function are nearly identical when the ratio

τ/φ is the same. Further, for different values of the ratio τ/φ, similar predicted values are

produced but the prediction variances vary. This indicates that when interpolation is the

objective, the ratio τ/φ matters more than the individual parameters.

Zhang’s theoretical results assumed a GLMM with no covariates. Irvine et al. (2007)

investigate empirical behavior of estimates of τ and φ for LMMs with covariates, a continuous

response, and spatially correlated errors. They compare the strength of spatial correlation on

maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of τ and φ

of the exponential spatial covariance model plus nugget for different sample sizes, sampling

designs, and nugget-to-sill ratios. For all combinations of sample size (n = 144 to 361),

design, and ratio, they conclude that ML and REML give reasonable estimates when φ = 1

for a 10 × 10 spatial domain. Further, they also show that the variance in the estimates

decreases as the sample size increases. When φ = 3, corresponding to larger effective range

values, ML tends to underestimate the spatial autocorrelation function and the variability

of the estimates is large. The variability, in this case, does not tend to decrease with larger

sample sizes. They also note a positive association between the parameters τ and φ, which is

not surprising given the consistency results of Zhang (2004). Irvine et al. (2007) and others

have shown that cluster sample designs where the clusters are distributed across the region of

interest are optimal for covariance parameter estimation under the exponential-with-nugget

model.
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3.3.2 Simulations for PLMMs

The theory of Zhang (2004) is for GLMMs with no covariates and the empirical results

of Irvine et al. (2007) were for continuous response data. We investigate the behavior for

spatial probit latent variable models for discrete response data, or PLMMs. Recall that for

binary response data, a PLMM is a GLMM. However, for ordinal data, a PLMM is not

a GLMM (see Chapter 1). We evaluate the estimability of the covariance parameters in

the exponential covariogram (31) for spatial PLMMs with binary and ordinal response data

through simulation. The spatial PLMM can be defined through a Gaussian latent variable

Z(s) such that

Z(s) ∼ N(X(s)β + W (s), σ2I) (32)

where W (s) is a spatial random effect. This will be called a second-stage spatial model

as defined in Chapter 4.1. We simulate n = 300 locations, 200 of which are simulated via

Poisson cluster sampling and an additional 100 locations using a lattice design on the unit

square (see Figure 3.1). We note that the results might vary for other spatial designs. For

simplicity, we do not include any fixed effects in the model. We simulate W (s) from a

mean-zero Gaussian spatial process with exponential covariance in (31). Using the data

augmentation strategies of Albert and Chib (1993), we draw

Z(s) ∼ N(W (s), σ2I). (33)

For identifiability in the probit regression model, σ2 is fixed to 1. Given Z(s), the binary

response Y (s) is equal to 1 for values of Z(s) > 0 and 0 for values of Z(s) ≤ 0. For ordinal

response data, Z(s) is thresholded according to λ, which we assume is fixed and known.

Figure 3.2 shows a simulated response field, Y (s), for binary and ordinal data, where the

ordinal response is assumed to have five categories. Both regions show spatial correlation in

the response variable where locations at close proximity are similar.
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Figure 3.1: Simulated locations via Poisson cluster sampling and lattice design.

     



















     



















      

Figure 3.2: Simulated binary (left) and ordinal (right) spatial response fields of Y (s) at
n = 300 simulated locations.
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Table 3.1: Simulation values for exponential covariogram parameters, τ and φ, for
comparison.

τ = 0.25 τ = 1 τ = 2 τ = 4
φ = 0.1 A A A B A A D A
φ = 0.2 B A B B B A B D A
φ = 0.4 C A C B C B C D A
φ = 0.8 C D B
φ = 1.6 A D C

The objective of our simulation study is to determine how well binary and ordinal data

can estimate the parameters of the exponential covariogram. We simulate data for different

values of τ and φ in (31), as well as different ratios of τ/φ (Table 3.1). We aim to address

the effects of the spatial parameters on the likelihood for the following scenarios:

1. Changes in the partial-sill parameter, τ , for a fixed range, φ (red in Table 3.1).

2. Changes in the range parameter, φ, for a fixed partial-sill parameter, τ (green).

3. Changes in both partial-sill parameter, τ , and range parameter, φ, for a fixed ratio,

τ/φ (blue).

Large values of φ imply the field has long-range spatial correlation. The effective range is

the distance beyond which the correlation between observations is less than or equal to 0.05.

For the exponential covariance function without nugget, the effective range is approximately

3φ. The effective range for the exponential-with-nugget covariance function is

−φ log

(
0.05

τ + σ2

σ2

)
.

The nugget is defined as the amount of variance that is not explained or modeled as spatial

correlation. Therefore, the PLMM assumes a nugget of 1 by fixing σ2 = 1. Figure (3.3)

shows the true autocorrelogram for the exponential covariance function for parameter values

of τ and φ of interest. Larger values of τ correspond to smaller nugget-to-sill ratios and thus
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Figure 3.3: Autocorrelograms for the exponential covariance function for τ = 0.25 (left), 1
(middle), and 4 (right) and φ = 0.1, 0.2, and 0.4.

larger spatial signals. The rate of decay of spatial correlation decreases as the range param-

eter, φ, increases. Figure (3.4) gives the empirical autocorrelogram for binary, ordinal, and

continuous response data simulated when τ = 1 and φ = 0.2. The empirical autocorrelation

values suggest estimates of both τ and φ below their true values for all of the data types.

We plot the log-likelihood surfaces for the binary, ordinal, and continuous response models

for different values of τ and φ. Note that the plot axis in Figures (3.5) - (3.14) differ. This

is because the empirical likelihood is computed on a grid of parameter values for τ and φ

and we wanted the resolution of the grid to scale with τ and φ. Figure 3.5 shows the log-

likelihood surface for each data type when τ = 0.25 and φ is 0.1 (top), 0.2 (middle), and

0.4 (bottom). The same plots are shown in Figures 3.6 and 3.7, where τ = 1 and τ = 4,

respectively. For all data types and values of τ and φ, the log-likelihood surface reaches its

maximum at locations that underestimate the true value of τ and φ indicated by ! on the

plot. This agrees with the findings of Irvine et al. (2007) for continuous data. In general,

the mode of the log-likelihood surface is elliptical with major axis having a positive slope.

This is not surprising since Zhang (2004) showed that only the ratio τ/φ can be consistently

estimated. It is less noticeable in Figure 3.5 where τ = 0.25 because the spatial signal is
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Figure 3.4: Empirical autocorrelograms for the exponential covariance function for τ = 1
and φ = 0.2 for binary, ordinal, and continuous response data. The dashed line on the plots

indicate the true autocorrelation for the parameter values used in the simulation.

weak. Comparing across Figures 3.5, 3.6, and 3.7, we see that as τ increases for fixed φ, the

slope of the ridge increases. Looking at each figure separately, τ is fixed and we see that as

φ increases the slope of the ridge decreases. The modal region of the surface becomes more

localized as the spatial signal increases and the spatial range decreases (i.e., τ increases and

φ decreases).

The log-likelihood values vary greatly between the different types of data. To compare

across types, we create a log-likelihood ratio surface by dividing each value on the surface by

its maximum log-likelihood value. Values of 1 on the log-likelihood ratio surface indicate the

maximum log-likelihood. Larger values on the ratio surface indicate less optimal parameter

values. Figure 3.8 gives the log-likelihood ratio surface for τ = 0.25. Each data type

underestimates both τ and φ while the underestimation is greater when φ = 0.4 than when

φ = 0.1. Define data richness as the amount of information in the data, where binary

data is the least rich and continuous data is the most rich. The contour lines indicate that

the continuous response ratio surface is steeper than both the ordinal and binary response

surfaces at similar parameter values. This indicates that the signal in the response likelihood

for τ and φ increases with data richness. When the spatial signal increases (i.e., τ increases
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Figure 3.5: Log-likelihood surfaces for binary (left), ordinal (middle), continuous (right)
response data for τ = 0.25 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom) where !

denotes the true values of τ and φ.
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Figure 3.6: Log-likelihood surfaces for binary (left), ordinal (middle), continuous (right)
response data for τ = 1 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom) where ! denotes

the true values of τ and φ.
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Figure 3.7: Log-likelihood surfaces for binary (left), ordinal (middle), continuous (right)
response data for τ = 4 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom) where ! denotes

the true values of τ and φ.
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Figure 3.8: Log-likelihood ratio surfaces for binary (left), ordinal (middle), continuous
(right) response data for τ = 0.25 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom). Ratio
computed as the log-likelihood divided by the maximum log-likelihood within each field.

for a fixed φ), the difference between response type becomes more clear. Figure 3.9 shows

the log-likelihood ratio surface when τ = 1. Again, the continuous response surface is the

steepest. The ordinal response surface with k = 5 categories is very similar to the continuous

response surface. It is interesting to note that as the richness in the response data increases,

the maximized log-likelihood ratio region becomes less localized, specifically for the range

parameter φ. Similar patterns are seen in Figure 3.10 when τ = 4.
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Figure 3.9: Log-likelihood ratio surfaces for binary (left), ordinal (middle), continuous
(right) response data for τ = 1 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom) where !

denotes the true values of τ and φ. Ratio computed as the log-likelihood divided by the
maximum log-likelihood within each field.

92



    


















    















    















    
















    













    













   


















   















   















Figure 3.10: Log-likelihood ratio surfaces for binary (left), ordinal (middle), continuous
(right) response data for τ = 4 and φ = 0.1 (top), 0.2 (middle), and 0.4 (bottom) where !

denotes the true values of τ and φ. Ratio computed as the log-likelihood divided by the
maximum log-likelihood within each field.
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The theory of consistent estimation of the spatial parameters by Zhang (2004) indicated

that similar patterns may be observed in the likelihood surfaces for different values of τ and

φ when the ratio of τ/φ is the same. Therefore, we simulated data with τ = 2 and φ = 0.2,

0.4, and 0.8 as well as τ = 4, and φ = 0.4, 0.8, and 1.6. The ratios of τ/φ are the same as

those shown in Figures 3.6 and 3.9, where τ/φ = 10, 5, and 2.5. Figures 3.11 and 3.12 give

the log-likelihood surfaces and Figures 3.13 and 3.14 give the log-likelihood ratio surfaces for

the scaled-parameter simulations. Similar surfaces are produced when τ and φ are scaled

such that τ/φ is the same. As the scaling factor increases, the size of the modal region of

the log-likelihood surface also scales by extending further along the τ/φ ridge. Once again,

similar patterns appear in the ordinal and continuous response surfaces. The localization

of the modal region of the log-likelihood surfaces also appear to scale with τ and φ. The

maximum regions are larger in Figure 3.13 and 3.14 than in Figure 3.9 for all data types.

We believe this to predominantly be a feature of the large range values since the effective

range of these surfaces is larger than the maximum distance between locations. Therefore,

the large scale spatial correlation cannot be captured within a 1 × 1 unit square for values

of φ ≥ 0.4.

In summary, the signal of the spatial parameters, τ and φ, in the likelihood of PLMMs is

similar to that found in the likelihood of GLMMs and LMMs. Both binary and ordinal data

tend to underestimate the spatial parameters while preserving the ratio of the consistently

estimable derived parameter, τ/φ (Figures 3.5 - 3.10). This is indicative of the positively

correlated modal ridge in each log-likelihood surface plot. The log-likelihood surfaces tend to

underestimate the parameters less at lower values of φ for fixed values of τ (comparison across

green letters in Table 3.1). This is seen in each Figure (3.5 - 3.10) as you compare within

data type. The surfaces also indicate that the signal in the spatial parameters is greater

for larger values of τ for fixed values of φ (comparison across red letters in Table 3.1). The

log-likelihood surfaces are very similar for different values of τ and φ when the ratio, τ/φ is

preserved (comparison across blue letters in Table 3.1), matching the asymptotic results of
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Zhang (2004) (Figures 3.9, 3.6, 3.11 - 3.14). As expected, the amount of signal in the response

likelihood is positively correlated with the richness in the data. Ordinal response data with 5

categories is richer than binary response data. Further, the log-likelihood surfaces produced

by ordinal response data are similar to those produced by continuous response data. Lastly,

the difference in signal of the spatial parameters between the data types is more apparent

when the spatial signal increases relative to the nugget (Figures 3.8 - 3.10).

3.4 Fitting spatial models using MCMC

The likelihood surfaces shown in Section 3.3 indicate that there is weak parameter identi-

fiability for the spatial parameters in spatial PLMMs. Recall that weak identifiability means

that pθ(y) ≈ pθ′(y) for all y and θ *= θ′. The PLMM for binary response data, for example,

has likelihood function

L(τ,φ, β; y(s)) =

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|ΣW + I|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β)′(ΣW + I)−1(Z(s) − X(s)β)

}
dZ,

(34)

where y(s) are the observable binary data, λ = (λ0,λ1,λ2) = (−∞, 0,∞), and ΣW is a

spatial covariance matrix defined by (31). Consider the conditional posterior distributions

of each spatial parameter, τ and φ, as well as the coefficient vector β. For example,

p(φ|y(s), τ, β) ∝ L(y(s); τ,φ, β)p(φ, τ, β)

∝ L(τ,φ, β; y(s))p(φ),

where the second line holds assuming φ, τ , and β are independent a priori. As seen in

Section 3.3, there exists (τ ′,φ′) *= (τ,φ) such that
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Figure 3.11: Log-likelihood surfaces for binary (left), ordinal (middle), continuous (right)
response data for τ = 2 and the ratio τ/φ = 10 (top), 5 (middle), and 2.5 (bottom) where

! denotes the true values of τ and φ.
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Figure 3.12: Log-likelihood surfaces for binary (left), ordinal (middle), continuous (right)
response data for τ = 4 and the ratio τ/φ = 10 (top), 5 (middle), and 2.5 (bottom) where

! denotes the true values of τ and φ.

97



    












    









    









   










   







   







   












   









   









Figure 3.13: Log-likelihood ratio surfaces for binary (left), ordinal (middle), continuous
(right) response data when τ = 2 and the ratio τ/φ = 10 (top), 5 (middle), and 2.5

(bottom) where ! denotes the true values of τ and φ. Ratio computed as the log-likelihood
divided by the maximum log-likelihood within each field.
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Figure 3.14: Log-likelihood ratio surfaces for binary (left), ordinal (middle), continuous
(right) response data when τ = 4 and the ratio τ/φ = 10 (top), 5 (middle), and 2.5

(bottom) where ! denotes the true values of τ and φ. Ratio computed as the log-likelihood
divided by the maximum log-likelihood within each field.
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L(τ ′,φ′, β; y(s)) ≈ L(τ,φ, β; y(s)).

Therefore, φ is a weakly identifiable parameter. The same holds true for the partial sill

parameter, τ .

We can also classify the weak identifiability of τ and φ as Bayesian nonidentifiability by

examining the full conditional distribution. The full conditional distributions include condi-

tioning on the spatial random effect, W (s). For comparison, the posterior of φ conditional

on the data, parameters, and spatial random effect W (s), can be written as

p(φ|y(s), W (s), τ, β) ∝ p(y(s)|W (s), τ,φ, β)p(W (s)φ, τ, β)

∝ p(y(s)|W (s), β)p(φ|W (s), τ)

∝ p(φ|W (s), τ).

Therefore, the full conditional posterior distribution of φ does not depend on the data, y(s).

It is important to remember that even though the spatial parameters are Bayesian noniden-

tifiable, it does mean there is no Bayesian learning. This encourages exploring different prior

distributions for τ and φ to maximize the potential for Bayesian learning of the parameters

from the data.

When fitting an MCMC algorithm to estimate the parameters in a spatial PLMM, we

want to assign suitable prior distributions to the weakly identifiable parameters, τ and

φ. In the literature, “suitable” ranges the entire spectrum from informative to vague with

infinite variance (e.g. Gelfand and Sahu, 1999; Eberly and Carlin, 2000; Gelfand et al., 2000;

Berger et al., 2001; Banerjee et al., 2003; Schmidt et al., 2008) This can also include various

parameterizations of the spatial covariogram. We begin by briefly discussing a few different

choices of prior distributions for τ and φ. Then, we propose a new parameterization of the

exponential covariogram and compare it to a current prior specifications via simulation.
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The second-stage spatial model (32) assumes the spatial error, W (si), have a stationary,

isotropic, mean-zero Gaussian process with exponential covariance function(31). That is,

Cov(W (si), W (sj)) = τ exp− 1
φ

dij

where dij is the distance between locations si and sj. To fit the model in the Bayesian

framework, we need to assign prior distributions to both τ and φ. It is well-known that prior

specifications strongly influence inference in spatial models (Berger et al., 2001). Therefore,

we want to be aware of the implications of assigning certain priors.

It is common in the literature of geostatistics to assume that τ and φ are independent

a priori. Therefore, we will first discuss priors where p(τ,φ) = p(τ)p(φ). Banerjee et al.

(2003) suggest assigning informative prior distributions since improper priors for the spatial

covariogram can lead to improper posteriors. Many assign a conjugate inverse-Gamma prior

distribution to the partial-sill parameter, τ , and a Gamma prior distribution to the range

parameter, φ. The difficulty stems from choosing hyperpriors for these prior distributions.

Gelfand et al. (2000), for example, suggests τ ∼ Inv. Gamma(2, 1) such that prior has mean

1 and infinite variance. They suggest this vague prior is reasonable since pure heterogeneity

(white noise or nugget) in the model is fixed at 1. The prior distribution assigned to φ

is specific to the size of the spatial domain. The hyperpriors can be specified using the

effective range where the effective range of the exponential covariogram is approximately

3φ. A suitable prior for the effective range is 3φ ∼ Unif(dmax/100, dmax) where dmax is

the maximum inter-location distance (Higgs and Hoeting, 2010). On the unit square, this

translates to φ ∈ [0.004, 0.7]. Schmidt and Gelfand (2003) suggest fitting the mean of the

prior distribution for φ to 1
6dmax. Berger et al. (2001) suggest assigning a reference prior to

p(τ,φ) such that p(τ,φ) ∝ p(φ)
τa where p(φ) is the prior distribution of φ. In contrast to other

common non-informative priors, the reference prior is advantageous as it is non-informative

yet yields a proper posterior distribution.
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Recall that the second-stage spatial probit model with no fixed effects is

Z(s) ∼ N(W (s), σ2I)

where a deterministic relationship exists between Z(s) and the binary or ordinal observable

response, Y (s). Instead of fixing σ2 to 1 for identifiability, Heagerty and Lele (1998) suggest

fixing σ2 + τ = 1. The spatial process, W (s), remains unchanged and is modeled

W (s) ∼ N(0, τR(d,φ))

but the latent variable Z(s) is now modeled

Z(s) ∼ N(W (s), (1 − τ)I).

In this case, τ represents the total variance attributable to the spatial variation.

Since neither τ nor φ is consistently estimable and only τ/φ is consistently estimable, it

may suggest that τ and φ should be assigned a joint prior distribution. The two parameters

could also be updated in block-form using a Metropolis-Hastings step. Further, it seems

not unreasonable to fix one of the spatial parameters in lieu of estimating the other. For

example, we could fix φ to its estimate from an indicator variogram. Conversely, we could

fix τ to a value that gives a reasonable nugget-to-sill ratio for spatial variation.

Re-parameterization of the exponential covariogram is also a reasonable alternative when

fitting the model within the Bayesian framework. Whereas re-parameterizing will not change

the likelihood of the model, it will change the conditional posterior distributions. In Chapter

4.1, we discussed second-stage and nugget-plus-covariance spatial modeling. Second-stage

modeling is a type of hierarchical centering and can lead to faster convergence of the MCMC

algorithm. Even though a re-parameterization of the exponential covariogram (31) cannot

make all parameters consistently estimable, it is possible to re-parameterize such that one
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of the parameters is consistently estimable. Recall the equivalency of the the following

covariograms:

τφ1 exp− 1
φ1

d = τφ2 exp− 1
φ2

d,

where φ1 *= φ2 and τ > 0 is a constant. This results from the exponential covariogram

being fully defined by its ratio τ/φ (Zhang, 2004, Theorem 2). Therefore, we define η to

be the consistently estimable parameter such that η = τ/φ and re-write the exponential

covariogram in (31) as

Cov(W (si), W (sj)) = ηφ exp− 1
φ1

dij . (35)

The motivation for the re-parameterization in (35) is two-fold: first, it is asymptotically

advantageous since η is consistently estimable, and second, it enhances the performance of the

MCMC algorithm. Having both the partial-sill and the range parameter be a function of φ

leads to better mixing properties of the MCMC by increasing the variability of the parameters

between iterations. It should also lead to better mixing of the fixed effect parameter, β, since

for small values of φ the fixed and random effect parameters can be weakly identifiable, and

thus, highly correlated in the MCMC. This is similar to implementing parameter expansion

to the iterative sampling algorithms discussed in Chapter 2

Christensen et al. (2006) suggest a similar re-parameterization where θ1 = log(τ 1/2)

and θ2 = log(τ/φ). Their approach is based on the fact that geostatistical data is most

informative about the covariance function near the origin. Therefore, they let τ control the

value at the origin where τ/φ is its derivative. Diggle and Ribeiro (2007, Chapter 5.4) offer

a slightly different parameterization where they define θ1 = log(τ/φ) and θ2 = log(φ). Both

of these logarithmic transformations result in each θ1 and θ2 requiring a Metropolis-Hastings

step.

To fit the re-parameterized model (35), we need to assign prior distributions to η and φ.

We aim to assign similar prior distributions to make comparisons between the two model

parameterizations. Therefore, the prior on φ is the same Gamma prior used in the original
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parameterization. The inverse-Gamma is still a conjugate prior for η, where we adjust the

hyperpriors to compensate for η being scaled by φ.

We simulate 300 locations on the unit square from a spatial PLMM. The mean of the

latent variable Z(s) contains an intercept term and one covariate, as well as the spatial

random effect, W (s). The covariate, X1(s) is drawn independently from a Uniform(-0.5,

0.5). The coefficient vector is (β0, β1) = (−0.5,−
√

2) for the binary response model and

(β0, β1) = (0.5,−
√

2) for the ordinal response model. The partial-sill and range parameter

of the spatial covariance function are set to τ = 1.0 and φ = 0.2, respectively, corresponding

to a derived parameter value of η = 5. For the original parameterization, the priors assigned

to the spatial parameters are τ ∼ Inv. Gamma(2, 3) and φ ∼ Gamma(1, 2). The prior for η is

adjusted such that ηφ spans a similar range as the prior of τ . Thus, η ∼ Inv. Gamma(2, 30).

We run MCMC for 100,000 iterations for the binary and ordinal response data under

both parameterizations and disregard the first 10,000 as burn-in. The posterior medians

and 95% credible intervals for the parameters of the spatial PLMM for binary response data

are given in Table 3.2. The estimates of the parameters for the two parameterizations are

quite similar where they both underestimate the range parameter, φ, and overestimate the

partial-sill parameter, τ . Estimates of effective sample size and autocorrelation plots for

the spatial probit model for binary response data are given in Table 3.3 and Figures 3.15

and 3.16. All effective sample sizes using the proposed parameterization are higher than

those resulting from the original parameterization. The differences are quite dramatic in the

effective sample size for the fixed effect covariate, β1. The autocorrelation plots reiterate

that the proposed parameterization results in lower autocorrelation and faster mixing of the

chain when fitting the spatial PLMM to binary data.

Table 3.4 gives the posterior medians and 95% credible intervals for the ordinal response

model. The estimates of β0 and β1 are similar between the two parameterizations. The spatial

parameter estimates, however, differ in that the original parameterization slightly overesti-

mates τ and underestimates φ, whereas the proposed parameterization underestimates η and
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Table 3.2: Posterior medians and 95% credible intervals of identifiable parameters of the
spatial PLMM for binary response data under each parameterization for 90,000 iterations

Parameterization
Parameter True value Original Proposed
β0 -0.50 -0.77 (-1.65, 0.48) -0.65 (-1.24, -0.24)
β1 -

√
2 -1.56 (-3.61, -0.71) -1.37 (-2.42, -0.66)

τ 1 1.65 (0.53, 10.04) *0.98 (0.35, 4.18)
η 5 *38.55 (1.40, 491.88) 17.87 (5.46, 119.73)
φ 0.2 0.04 (0.01, .94) 0.05 (0.02, 0.19)

* Denotes estimate is of a derived parameter

Table 3.3: Estimates of effective sample size of identifiable parameters of the spatial
PLMM for binary response data under each parameterization for 90,000 iterations.

Parameterization
Parameter Original Proposed
β0 201 285
β1 381 1,373
τ 123
η 223
φ 58 324
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Figure 3.15: Autocorrelation plots for the coefficient vector, β, for the binary spatial
PLMM under the original parameterization (top) and new proposed parameterization

(bottom).
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Figure 3.16: Autocorrelation plots for the spatial parameters, τ and φ, for the binary
spatial PLMM under the original parameterization (top), and η and φ under the proposed

parameterization (bottom).
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Table 3.4: Posterior medians and 95% credible intervals of identifiable parameters of the
spatial PLMM for ordinal response data under each parameterization for 90,000 iterations.

Parameterization
Parameter True value Original Proposed
β0 0.5 0.49 (-0.08, -0.98) 0.41 (-0.53, 1.52)
β1 -

√
2 -1.77 (-2.67, -1.14) -1.45 (-1.92, -0.98)

τ 1 1.25 (0.59, 3.25) *0.51 (0.20, 2.86)
η 5 *18.93 (3.04, 86.98) 2.20 (1.78, 2.74)
φ 0.2 0.06 (0.03, 0.46) 0.23 (0.09, 1.29)
λ2 0.6 0.72 (0.54, 1.01) 0.56 (.046, 0.68)
λ3 1.2 1.45 (1.15, 2.00) 1.14 (1.00, 1.30)
λ4 1.8 2.12 (1.72, 2.91) 1.69 (1.51, 1.87)

* Denotes estimate is of a derived parameter

estimates φ well. This leads to an overall underestimate of the derived partial-sill parameter

when fitting the proposed parameterized model. Weak identifiability is apparent in the esti-

mates for both parameterizations. The original parameterization overestimates τ and each

value of the threshold vector, λ, whereas the proposed parameterization underestimates η

and λ. Table 3.5 and Figures 3.17, 3.18, and 3.19 give the effective sample size estimates

and autocorrelation plots for the spatial PLMM for ordinal response data. Mixing appears

extremely fast for β1 and η where autocorrelation drops to near zero within the first few

lags.

Our results suggest that weak identifiability of the spatial parameters of the spatial probit

regression model for binary and ordinal response data greatly affect convergence of β and λ

as well. Increasing the variability within the chain by defining the partial-sill of the spatial

covariogram as a function of φ greatly increases the mixing of the chain. This is a similar

idea to parameter expansion strategies presented in Chapter ?? where similar results were

obtained. Therefore, when fitting a spatial probit regression model, we strongly suggest

using the proposed parameterization of the spatial covariogram.
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Table 3.5: Estimates of effective sample size of identifiable parameters of the spatial
PLMM for ordinal response data under each parameterization for 90,000 iterations.

Parameterization
Parameter Original Proposed
β0 834 462
β1 828 47,253
τ 390
η 87,907
φ 107 1,147
λ2 401 11,157
λ3 288 8,602
λ4 265 8,166

     



























     



























     



























     



























Figure 3.17: Autocorrelation plots for the coefficient vector, β, for the spatial PLMM for
ordinal response data under the original parameterization (top) and new proposed

parameterization (bottom).
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Figure 3.18: Autocorrelation plots for the spatial parameters, τ and φ, for the spatial
PLMM for ordinal response data under the original parameterization (top), and η and φ

under the proposed parameterization (bottom).
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Figure 3.19: Autocorrelation plots for the threshold parameters, λ2,λ3, and λ4, for the
spatial PLMM for ordinal response data under the original parameterization (top) and new

proposed parameterization (bottom).
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3.5 Discussion

We have shown using the mapping between fundamental and reduced-form parameters

that the non-spatial common factor probit model with covariates for ordinal response data is

identifiable (Section 3.2.2). Using theoretical work for spatial GLMMs and empirical results

for spatial LMMs for continuous response data, we investigated identifiability for spatial

probit models (Section 3.3.2). The log-likelihood surface plots for spatial PLMMs suggest

that the partial sill and range parameter of the exponential covariance function are not

identifiable. The positively correlated modal regions of the log-likelihood surfaces indicate

that the data are able to estimate the ratio τ/φ. This agrees with the previous work stating

that the ratio of the partial sill and range parameter is consistently estimable. We found that

the modal region of the surface becomes more localized as the spatial signal increases and

the spatial range decreases (i.e., τ increases and φ decreases). Further, binary, ordinal, and

continuous response data all underestimates τ and φ where the underestimation is greater

for larger φ. Lastly, the signal in the response likelihood for τ and φ increases with data

richness where richness is defined as the amount of information in the data.

Weakly identifiable parameters can hinder Bayesian inference by slowing convergence of

MCMC. Therefore, appropriate specification of prior distributions to weakly identifiable is

extremely important. Priors that are not informative can cause the Markov chain for the

weakly identifiable parameters to drift to extreme values leading to inaccurate estimates

(Gelfand and Sahu, 1999). Priors that are too informative, however, will limit Bayesian

learning from the data. We proposed re-parameterizing the exponential covariance function

and assigning proper prior distributions. The re-parameterization defines ηφ as the par-

tial sill and φ is the range parameter. This parameterization led to better mixing of the

MCMC by decreasing the autocorrelation in the chain between iterations. Our results of

the proposed parameterization, however, were only for a small simulation study. Whereas

the proposed parameterization is dramatically better in terms of convergence for the spa-
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tial PLMM, additional analyses will be performed as part of future work on this subject.

This includes investigating the prior distributions and their hyperpriors assigned to η and

φ as well as using the proposed parameterization of the exponential covariance function

for different models and types of data. Further, comparisons could be made between our

re-parameterization and the similar parameterizations of Christensen et al. (2006) and Dig-

gle and Ribeiro (2007, Chapter 5.4). One benefit of our parameterization is that η has a

conjugate update and therefore does not require a Metropolis-Hastings step.

Xie and Carlin (2006) compute estimates of Bayesian learning of weakly identifiable pa-

rameters for Gaussian hierarchical linear models with focus on conditional autoregression

spatial models. We would like to extend Bayesian learning estimation to the spatial param-

eters of a geostatistical spatial model. This includes quantifying the amount of Bayesian

learning for spatial PLMM models for binary and ordinal response data. Comparisons could

be made between the different response data types as well as between the the different pa-

rameterizations. This would lead to enhanced modeling for a general class of spatial models

in terms of parameter inference and computational efficiency.
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CHAPTER 4

COMPARING AND CONTRASTING FIRST-STAGE AND

SECOND-STAGE SPATIAL PROBIT MODELS

Multiple forms of the probit model for spatially-correlated binary and ordinal response

data have been adopted in the literature (e.g. De Oliveira, 2000; Gelfand et al., 2000; Higgs

and Hoeting, 2010; Schliep and Hoeting, 2013). In this chapter, we compare two model

structures that differ in the level, or stage, containing spatial correlation. The first-stage

model assumes spatial correlation at the data level. That is, the binary or ordinal response

data has a spatial covariance matrix. The second-stage model assumes spatial correlation

in the process level where the mean of the binary ordinal response data is a function of

a spatially-correlated random variable. Model identifiability differs slightly between the

two models since the second-stage model contains an additional parameter in the spatial

covariance function. This allows the second-stage model to be more flexible when fitting

the model to observed binary or ordinal data. We show that for certain parameter values,

the second-stage spatial probit model can mimic the first-stage spatial model in terms of

parameter inference and prediction. The more restrictive first-stage model, however, is

unable to resemble the second-stage model in most cases. We discuss the implications of

fitting each model and their impact on parameter estimation and prediction. Comparing

these two models enhances our knowledge of spatial models for ordinal response data.

4.1 First-stage and second-stage spatial probit models

In this section we compare the first-stage and second-stage spatial probit models for

binary response data noting that binary data is a special case of ordinal data. The models

and their likelihood functions shown within can easily be modified for ordinal data with more
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than 2 categories. For observed response data y(s) = {y(s1), . . . , y(sn)}, covariates X(si),

for i = 1, . . . , n, and coefficient parameter vector β, the likelihood for the traditional probit

model for independent binary data is

L(β; y(s) =
n∏

i=1

Φ(X(si)
′β)y(si)(1 − Φ(X(si)

′β))1−y(si).

The latent variable data augmentation version of this model assumes Z(s) ∼ N(X(s)β, I)

with

p(Z(si)|y(si), β) ∼






TN(X(si)′β, 1,−∞, 0) y(si) = 0

TN(X(si)′β, 1, 0,∞) y(si) = 1,

where TN(µ, σ2,λlower,λupper) specifies a normal distribution with mean µ, variance σ2, and

lower and upper truncation points, λlower and λupper, respectively.

One approach for modeling spatial correlation in binary data using probit regression is

to replace the identity covariance matrix, I, with a spatial covariance matrix. This is known

as a direct or first-stage spatial probit model since the spatial correlation is assumed directly

on Z(s). The deterministic relationship between Y (s) and Z(s), implies spatial correlation

directly on the binary response data making the model not within the class of PLMMs. The

first-stage spatial model is a very natural extension of Albert and Chib (1993). Here,

Z(s) ∼ N(X(s)β, τR) (36)

where R is a correlation matrix defined by parameter, φ, and spatial distance matrix, d.

For the exponential covariogram, φ is univariate and R is defined by

R(φ, dij) = Cor(Z(si, Z(sj) = exp− 1
φ

dij (37)

where dij is the distance between locations si and sj and φ is the range parameter. When τ

is fixed to 1, the first-stage model parameters are identifiable. The likelihood function for the
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first-stage spatial probit model is a multivariate integral and a function of the parameters

β,φ, and τ where τ = 1. It is computed

L(β, τ = 1,φ; y(s)) =

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|τR|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β)′(τR)−1(Z(s) − X(s)β)

}
dZ(s)

(38)

where λ0 = −∞,λ1 = 0, and λ2 = ∞. The first-stage spatial probit model is a no-nugget

model since all variation in the response is being modeled as spatially-correlated variation.

The first-stage spatial model implies that the observable binary response, Y (si), is highly

correlated with Y (sj) for nearby locations, si and sj. Oliveira (2000) fit clipped Gaussian

random field models containing first-stage spatial correlation which are similar and conclude

that they are suitable in situations where there is a high degree of smoothness in the binary

response.

In contrast, we propose a second-stage spatial probit regression model with spatial ran-

dom effect. The model fits within the PLMM framework and is arguably more intuitive than

the first-stage spatial model (36). Using the same notation as the first-stage spatial model

where Z(s) is the augmented data, the second-stage model assumes

Z(s) ∼ N(X(s)β + W (s), I), (39)

where W (s) is a spatial random effect such that W (s) ∼ N(0,ΣW ) and ΣW = τR. This

model allows for spatial correlation in the mean of the latent variable Z(s) but does not

require an artificially smooth binary response surface. In regards to second-stage modeling,

Banerjee et al. (2003, p.p. 146-148) states, “Introducing the spatial effects in the mean

encourages the mean of the spatial variables at proximate locations to be close to each

other, adjusted for covariates. Though marginal dependence is induced between Y (si) and

Y (sj), the observed y(si) and y(sj) need not be close to each other.”
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The likelihood function for the second-stage spatial probit model as a function of the

parameters β, τ , φ, and the random effect, W (s), is

L(β, W (s), τ,φ; y(s)) = L(β, W (s); y(s))

=

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|I|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β − W (s))′I−1

(Z(s) − X(s)β − W (s))

}
dZ(s)

(40)

where the first line holds since the parameters τ and φ are in the second stage of the latent

process and thus do not appear in the likelihood (first stage). Therefore, conditional on

W (s), the likelihood does not contain the spatial parameters τ and φ. When we marginalize

the second-stage spatial model (40) over the spatial random effect, W (s), the likelihood is

L(β, τ,φ; y(s)) =

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|τR + I|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β)′(τR + I)−1(Z(s) − X(s)β)

}
dZ(s)

=

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|ΣW + I|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β)′(ΣW + I)−1(Z(s) − X(s)β)

}
dZ(s).

(41)

The marginalized likelihood for the second-stage spatial probit model is the multivariate

integral of the likelihood of a Gaussian process covariance-plus-nugget spatial model for

continuous response data (Banerjee et al., 2003, p.p. 130-133).

An important differentiation between the likelihood of the first-stage (38) and second-

stage (41) spatial probit model is that the first-stage model assumes a no-nugget covariance.

This is a major assumption since it means that all variation in the binary response is the
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result of the spatial random effect. Therefore, the stochasticity of the binary response is

purely spatial as there is no non-spatial component. First-stage spatial modeling may be

appropriate when proximate observations are assumed to be close whereas second-stage

modeling is appealing when the interest is in the spatial explanation in the mean. Since

binary and ordinal data are discrete, we find second-stage spatial modeling via the PLMM

(39) to be more appropriate as it limits artificial smoothing, or under-dispersion, in the

discrete response. The PLMM also includes an additional spatial covariance parameter, τ ,

the partial sill of the marginal covariance of the latent variable Z(s). Whereas this makes

the model more flexible in allowing the stochasticity in the binary response to contain both a

spatial and non-spatial component, it can also cause issues with model near nonidentifiability

as discussed in Chapter 3. This is true for ordinal response data as well since binary data is

a simple case of ordinal data. The likelihood functions in (38), (40), and (41) also hold for

ordinal response data. When the ordinal response contains K categories, λ1 = −∞, λ2 = 0,

λK+1 = ∞, and λ3, . . . ,λK are parameters to be estimated.

In Section 4.2 we compare the likelihoods of the first-stage and second-stage model using

data simulated under both models. Similar to the parameter identifiability investigations in

Chapter 3, we examine the ability of each model’s likelihood to detect the signal of the spatial

parameters. In Section 4.3 we discuss various methods for predicting ordinal response data at

unobserved locations using the posterior predictive distribution. We discuss a method, albeit

computationally expensive, for obtaining a posterior distribution of the density function of

the unobserved ordinal response. This produces a posterior distribution of the expected value

and variance of the unobserved ordinal response. We then offer an efficient and accurate

method for approximating the posterior distribution of the expected value and variance and

evaluate the method using an example. In Section 4.4 we compare the first-stage and second-

stage model in terms of prediction using the approximation. This includes showing that the

prediction estimates are equivalent under certain limiting conditions and parameters values
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of the first-stage and second-stage model. The chapter concludes with a discussion in Section

4.5.

4.2 Comparing first-stage and second-stage model likelihoods via

simulation

In this section, we compare the likelihood functions of the first-stage and second-stage

spatial probit models via simulation. To start, we naively fit the first-stage spatial model

(36) to data simulated using the second-stage, or PLMM, model (39). Figure 4.1 shows the

log-likelihood values for the first-stage spatial model for binary response data versus φ for

data simulated at different values of τ and φ. For each combination of τ and φ, the first-stage

model greatly underestimates the range parameter, φ, to a point of weak or no spatial signal.

This is not surprising since the variance of the PLMM contains both a spatially-structured

component and an independent noise component. Therefore, the first-stage model having

only spatially-structured variance will underestimate φ to compensate for being unable to

model the extra noise in the response field. As τ increases in the second-stage model used for

simulating the data, the underestimation of φ decreases slightly. This is because large values

of τ correspond to small nugget-to-sill ratios. When τ = 4, for example, the additional noise

of the PLMM is muted. We further address the similarity of the first-stage and second-stage

spatial models for large τ in Section 4.4 in terms of their limiting predictive distributions

proposed in Section 4.3.

Figure 4.2 compares the log-likelihood plots when τ = 1 when the data are fitted using

both the first-stage and second-stage model. This shows that the second-stage model is able

to capture the spatial signal in the data where the first-stage model could not. Overall, the

severe underestimation of φ indicates that the first-stage spatial model is inappropriate for

discrete response fields that contain unstructured stochasticity.
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Figure 4.1: Log-likelihood values plotted versus φ for binary response data using the
first-stage model when data were generated using the PLMM model with τ = 0.25 (top), 1

(middle), and 4 (bottom) and φ = 0.1 (left), 0.2 (middle), and 0.4 (right). The vertical
lines show the true values of φ. Note that for the first-stage model, τ = 1.

120



     























     


























    


























     























     


























    























Figure 4.2: Log-likelihood values plotted versus φ for binary response data fitted using the
first-stage spatial model (top) and second-stage spatial model (bottom). Data were

simulated using the second-stage spatial model with τ = 1 and φ = 0.1 (left), 0.2 (middle),
and 0.4 (right). The vertical lines show the true values of φ. Note that for the first-stage

model, τ = 1.
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To more fully compare the first-stage and second-stage model, we simulated data from

the first-stage spatial model and fit both the first-stage and second-stage model. Data

simulated from the first-stage model assume τ = 1 for identifiability. Figure 4.3 shows the

log-likelihood values verses φ for the binary response data fitted using the first-stage model

and second-stage model. Even when the data are generated from the first-stage model, ML

still underestimates φ for both the first-stage and second-stage models. The log-likelihood

values of the second-stage model are plotted versus φ for fixed values of τ . Shown are τ set

to 1 and its MLE. The log-likelihood trend is similar for both values of τ when fitting the

second-stage model where ML underestimates φ. The underestimation of φ appears similar

between the first-stage and second-stage model and agrees with the work of Zhang (2004)

and Irvine et al. (2007), as well as the results in Chapter 3. There does appear to be more

signal in the log-likelihood of the second-stage model compared to the first stage model,

however, in that the log-likelihood decreases at a faster rate.

The log-likelihood surfaces of the second-stage model for binary, ordinal, and continuous

response data are given in Figure 4.4 for data simulated using the first-stage model. Whereas

φ is underestimated, τ is greatly overestimated. For the same reasons as given above, larger

values of τ correspond to smaller nugget-to-sill ratios. Therefore, the second-stage model

more closely resembles the first-stage model at larger values of τ . The binary probit model is

able to overestimate τ since the variance is unidentifiable. The continuous response model is

unable to compensate by increasing τ since it is an identifiable parameter. Further, recall that

larger values of φ lead to less localized spatial correlation where estimation at a particular

location is more affected by neighbors and by neighbors at further distances. Therefore, the

likelihood surface for the continuous response data overestimates φ to adjust for the under-

dispersion of the first-stage model. The log-likelihood surface for ordinal data is similar to

the continuous response surface. This is because in our simulation the threshold vector is

assumed fixed and known putting an upper limit on τ . In practice, the threshold vector is

estimated, in which case τ can increase to compensate for data that has less dispersion.
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Figure 4.3: Log-likelihood values plotted versus φ for binary response data fitted using the
first-stage spatial model (top) and second-stage spatial model (bottom). Data were

simulated using the first-stage spatial model with τ = 1 and φ = 0.1 (left), 0.2 (middle),
and 0.4 (right). The log-likelihood values plotted for the second-stage spatial model are for

fixed values of τ .
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Figure 4.4: Log-likelihood surfaces for binary (left), ordinal (middle) and continuous (right)
response data using spatial PLMM. Data were simulated using the first-stage spatial model

with τ = 1 and φ = 0.1 (left), 0.2 (middle), and 0.4 (right).
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Figure 4.3 demonstrates that the first-stage spatial model is only appropriate when it

can be assumed that the binary spatial response surface contains only spatially-correlated

stochasticity. The second-stage model is more flexible in allowing there to be non-spatial

variation in the response field which can limit artificial smoothing. The second-stage model

can be similar to the first-stage model for large values of τ and can perform equally well in

terms of parameter estimation of φ. Whereas we focused on binary response data in this

section, the same results hold for spatially-correlated ordinal response data with unknown

thresholds. Before we make a general recommendation of fitting the second-stage model,

even when it is assume that all variation in the binary or ordinal response is spatially-

correlated, we want to compare prediction of the response at unobserved locations using

the two models. If the second-stage model is able to predict the binary or ordinal response

equally well or better than the first-stage model, we will consider it the optimal probit model

for spatially-correlated binary and ordinal data.

4.3 Latent variable approach to prediction of ordinal response data

One of the advantages of fitting a geostatistical spatial model, as opposed to a Markov

random field, is improved predictions at unobserved locations. Prediction over space, com-

monly referred to as spatial interpolation, is sought after in many applications. Kriging is a

geostatistical estimator at an unobserved location within a random field that is inferred from

sample data (see Stein (1999) for theoretical results). Linear estimation draws inference on

the response variable at an unobserved location using a linear combination of the observed

response variables and weights. The simple kriging estimate is the best linear predictor of

the unobserved response in that it minimizes the mean squared prediction error (MSPE).

The estimate of the response that minimizes MSPE is the conditional expectation of the

unobserved response variable given the observed data. Let s0 be the new location of interest

and s = (s1, . . . , sn) the observed locations within our sample. The kriging estimate of

Y (s0) given the observed data y(s) = (y(s1), . . . , y(sn)) is
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Ŷ (s0) = E(Y (s0)|y(s)).

For ordinal response data with K categories,

E(Y (s0)|y(s)) =
K∑

k=1

k P (Y (s0) = k|y(s))

=
K∑

k=1

k P (Y (s0) = k, y(s) = y)

P (y(s) = y)
.

(42)

For k = 1, . . . , K, define the threshold vector λ = {λ1 = ∞,λ2 = 0,λ3, . . . ,λK+1 = ∞}. We

compute the joint probability of Y (s0) = k and the observed data, y(s) as

P (Y (s0) = k, y(s)) =

∫ λk+1

λk

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|Σ + I|−1/2

× exp

{
−

1

2
(Z(s0, s) − X(s0, s)β)′(Σ + I)−1

(Z(s0, s) − X(s0, s)β)

}
dZ(s0, s)

(43)

where X(s0, s) = [X(s0), X(s1), . . . , X(sn))]′, and Z(s0, s) = (Z(s0), Z(s1), . . . , Z(sn)))′.

The covariance matrix for Z(s0, s), Σ, can be partitioned such that

Σ =




Σ00 Σ01

Σ10 Σ11



 ,

where Σ00 = Var(Z(s0)), Σ01 = Σ′
10 = Cov(Z(s0), Z(s)), and Σ11 = Cov(Z(s), Z(s)). Each

covariance is computed using a valid covariance function (e.g. (31)).

The denominator in (42) contains only the observed data and therefore need only be

computed once. It is a multivariate integral of the observed data and is the same as the

likelihood function in (41). It is computed
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P (y(s) = y) =

∫ λy(s1)+1

λy(s1)

· · ·
∫ λy(sn)+1

λy(sn)

(
1

2π

)n/2

|Σ11 + I|−1/2

× exp

{
−

1

2
(Z(s) − X(s)β)′(Σ11 + I)−1(Z(s) − X(s)β)

}
dZ(s).

(44)

To calculate E(Y (s0)|y(s)) in (42), we must compute (43) for k = 1, . . . , K. This is compu-

tationally expensive for even moderate n.

We propose a method for approximating the conditional expectation (42) using the latent

variables Z(s0) and Z(s) and the properties of the normal distribution. We write the joint

marginal distribution of Z(s0) and Z(s) as




Z(s0)

Z(s)



 ∼ N








X(s0)β

X(s)β



 ,




Σ00 Σ01

Σ10 Σ10







 . (45)

The conditional distribution of Z(s0) given Z(s) is

Z(s0)|Z(s) ∼ N(X(s0)
′β + Σ01Σ

−1
11 (Z(s) − X(s)β),Σ00 − Σ01Σ

−1
11 Σ10). (46)

Recall that for ordinal data modeled using the probit link function and the augmented

data,

P (Y = k) = P (λk ≤ Z < λk+1) = Φ

(
λk+1 − E(Z)√

Var(Z)

)

− Φ

(
λk − E(Z)√

Var(Z)

)

.

Therefore,

P (Y (s0) = k|y(s)) = P (λk ≤ Z(s0) < λk+1)|y(s)).
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We approximate the conditional probability of Y (s0) given the observed response y(s) using

the conditional probability of Y (s0) given the latent variable Z(s). That is,

P (Y (s0) = k|y(s)) ≈ P (Y (s0) = k|Z(s))

= P (λk ≤ Z(s0) < λk+1)|Z(s))
(47)

Using (47), we approximate the expected value of Y (s0) given y(s) as

E(Y (s0)|y(s)) =
K∑

k=1

k P (Y (s0) = k|y(s))

≈
K∑

k=1

k P (λk ≤ Z(s0) < λk+1|Z(s))

=
K∑

k=1

k

[

Φ

(
λk+1 − E(Z(s0)|Z(s))√

Var(Z(s0)|Z(s))

)

− Φ

(
λk − E(Z(s0)|Z(s))√

Var(Z(s0)|Z(s))

)]

= E(Y (s0)|Z(s))

(48)

Thus the approximation proposed in 48 avoids the computationally intensive integrations

required to predict Y (s0) given y(s) based on (43) and (44).

To evaluate the approximation, we simulate ordinal response data with K = 5 from the

PLMM in (39) at 310 locations within the unit square where n = 300 are considered ob-

served observations and the remaining m = 10 are unobserved locations for out-of-sample

prediction. We assume an intercept and one covariate simulated from Unif(−1, 1) where

we fix (β0, β1) = (3, 5), τ = 1, φ = 0.2, and λ = (−∞, 0, 2, 4, 6,∞). For each of the m

unobserved locations, we compute the expected value of Y (s0) using (42) and the multi-

variate integrals (43 and 44) and the approximation method (48) conditioned on the latent

variables. Table (4.1) gives the expected value of Y at the unobserved locations using the

two approaches. The estimates are very similar for all m unobserved locations. Therefore,

we deem the approximation method a suitable alternative for estimating ordinal response

data at unobserved locations for the spatial PLMM. Whereas the locations in this example
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Table 4.1: The conditional expectation of Y at m = 10 unobserved locations using the
multivariate integral approach (42) and the approximation approach (48).

True Integral Approximation
Location Value approach approach
1 2 1.969 2.025
2 1 2.231 2.152
3 2 1.046 1.032
4 1 1.016 1.012
5 5 4.709 4.745
6 1 1.044 1.028
7 5 4.882 4.877
8 4 3.469 3.567
9 3 3.424 3.305
10 5 4.225 4.235

were simulated from a bivariate uniform distribution, the results may vary for other spatial

designs.

The mean squared error (MSE) under the two prediction approaches for the 10 observed

locations is also similar. The integral approach has a mean squared error (MSE) of 0.359 and

the latent approach has MSE of 0.321. The approximation method appears to out-perform

the multivariate integral method because the latent variable Z used in (48) is assumed

known. In practice however, the latent variable Z will be estimated, leading to additional

uncertainty. As future work we would like to compare the two methods in terms of their

prediction error.

The main advantage of the approximation method is that computing the approximate

conditional expectation of the unobserved response takes less than one-tenth the time of

computing the multivariate integrals. The difference in computing time will increase as the

number of observed locations increases. It is worth mentioning that the computational cost

of the multivariate integral is not a product of the dense spatial covariance matrix. Thus,

we also recommend the approximation method for predicting ordinal response data under

the probit model with a sparse covariance matrix.

129



We must make a few comments regarding computing the E(Y (s0)|y(s)) in practice.

First, the estimates computed for the m = 10 unobserved locations were done individually.

Whereas it is common to jointly estimate the kriging estimate at more than one site si-

multaneously and is straightforward in the Gaussian case using the conditional distribution

given in (46), joint estimation is not particularly useful for binary or ordinal response vari-

ables. In computing the conditional expectation of Y (s0) in (42), the marginal probability,

P (Y (s0) = k|y(s)), is computed for k = 1, . . . , K. To estimate Y (s0), which is now a

vector-valued random variable at unobserved locations, there are Km marginal probabilities

that could be computed. For example, we could compute the probability that Y (s0) = k

for all m unobserved locations, which is rarely of interest even when m = 2. Therefore,

we recommend predicting E(Y (s0)|y(s)) using (42) or (47) separately for each unobserved

location.

Second, the parameter values β, λ, τ and φ are unknown and need be estimated. In a

frequentist context, the parameters might be estimated using maximum likelihood estima-

tion. The estimates can then be plugged into either the multivariate integral equation (42)

or its approximation (47) to obtain estimates of the binary or ordinal response variable at

an unobserved location.

In the Bayesian context, MCMC can be used to obtain samples from the posterior distri-

bution for each of the unknown parameters. We estimate the unobserved binary or ordinal

response variable using the posterior predictive distribution. Computing E(Y (s0)|y(s)) us-

ing our samples from the posterior distribution is computationally infeasible since it requires

the multivariate integrals (43) and (44) to be evaluated for each iteration of the chain re-

tained after burn-in. Therefore, the posterior predictive distribution of Y (s0) is traditionally

obtained by sampling from the posterior predictive distribution of the latent continuous vari-

able, Z(s0). De Oliveira (1997, 2000) and Higgs and Hoeting (2010) give detailed information

on how this is done for binary and ordinal response data, respectively. The traditional ap-

proach produces realizations of the posterior predictive distribution of the unobserved Y (s0).
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We can estimate E(Y (s0)|y(s)) using the mean of the realizations of the posterior predictive

distribution. Further, we can compute P (Y (s0) = k|(y(s)) for all ordinal categories k by

P (Y (s0) = k|(y(s)) =
1

M

M∑

m=1

I[ym(s0)=k],

where ym(s0) is the value of the mth realization from the posterior predictive distribution of

Y (s0) and M is the number of iterations of the chain.

Notice that in the traditional approach, E(Y (s0)|y(s)) is a point estimate computed from

M realizations of the posterior predictive distribution. The same is true for the posterior

probabilities P (Y (s0) = k|y(s)) for each k. Had we been able to evaluate (42) using the

multivariate integrals (43 and 44), we would have obtained M realizations of P (Y (s0) =

k|(y(s)) for each k. This differs from the traditional approach because here we don’t obtain

realizations of the predictive distribution of Y (s0). Rather, we get M realizations of the

density function of Y (s0) given y(s), which we refer to as a distribution of a density functions.

Using the density functions, we can compute E(Y (s0)|y(s)) for m = 1, . . . , M . Thus, we

obtain M realizations of the distribution of E(Y (s0)|y(s)). We can estimate the binary or

ordinal random variable at an unobserved location with a point estimate and credible interval

limits. This is invaluable as it quantifies the uncertainty in the estimate of the unobserved

response which we are unable to do using the traditional approach. This highly motivates

using (48) to approximate the multivariate integrals in the Bayesian framework. It allows us

to obtain samples from the approximate posterior distribution of the density functions and

E(Y (s0)|y(s)) without the computational complexity of the multivariate integrals.

4.4 Limiting prediction distributions of first-stage and second-stage

spatial models

We showed in Section 4.2 that the second-stage model performs equally well or better than

the first-stage model in terms of parameter estimation regardless of the assumptions about
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structured and unstructured stochasticity. The first-stage model was unable to estimate the

spatial range parameter when the true model contained unstructured stochasticity. This

implies that the first-stage model is more restrictive than the second-stage model. We also

noticed that for large values of τ , the empirical likelihood functions of the two models were

similar. In this section, we compare the first-stage and second-stage model in terms of

prediction at unobserved locations.

We compare the first-stage and second-stage spatial models introduced in Section 4.1 by

their predicted values at unobserved locations using the approximation (48). The general

expressions for the conditional expectation and variance of Z(s0) given the latent variable

Z(s) are

E(Z(s0)|Z(s)) = X(s0)
′β + Σ01Σ

−1
11 (Z(s) − X(s)β) and

Var(Z(s0)|Z(s)) = Σ00 − Σ01Σ
−1
11 Σ10.

(49)

The partition of the covariance matrix, Σ, under the first-stage spatial model is

Σ =




Σ00 Σ01

Σ10 Σ11



 =




1 R01

R10 R11



 .

Under the second-stage model, the covariance matrix is

Σ =




Σ00 Σ01

Σ10 Σ11



 =




τ + 1 τR01

τR10 τR11 + I



 .

Therefore, the conditional expectation and variance of Z(s0) under the first-stage spatial

probit model are
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E1(Z(s0)|Z(s)) = X(s0)
′β + R01R

−1
11 (Z(s) − X(s)′β)

Var1(Z(s0)|Z(s)) = 1 − R01R
−1
11 R10.

(50)

where the subscript denotes the stage of the spatial model. The conditional expectation and

variance under the second-stage spatial probit model, or PLMM, are

E2(Z(s0)|Z(s)) = X(s0)
′β + τR01(τR11 + I)−1(Z(s) − X(s)′β)

Var2(Z(s0)|Z(s)) = (τ + 1) − τ 2R01(τR11 + I)−1R10.
(51)

We compare the first-stage and second-stage spatial models by comparing their kriging

estimates at an unobserved location. For both models, the approximate conditional expec-

tation (48) of the ordinal response, Y (s0), given the observed data y(s) depends only on

the conditional expectations and variances given in (50) and (51). Let U represent the

known covariate and location information of the observed data such that U = (X(s), s)

where s = (s1, . . . , sn). For the unobserved location, s0, define U 0 = (X(s0), s0). Let the

parameter vector θ contain the set of model parameters β, τ , and φ, where τ = 1 under

the first-stage spatial model. Let Z1(θ, U) and Z2(θ, U) be functions of the parameters

and covariate information under the first-stage and second-stage model, respectively. The

quantities of interest for the two models are the conditional expectations and variances given

in (50) and (51) rewritten as,

E(Z1(θ, U 0)|Z1(θ, U)) and E(Z2(θ, U0)|Z2(θ, U))

and

Var(Z1(θ, U 0)|Z1(θ, U)) and Var(Z2(θ, U 0)|Z2(θ, U)).
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The conditional expectations and variances are equivalent under certain limiting distributions

of the spatial covariance parameters, leading us to the following lemmas and subsequent

propositions.

Lemma 1. Equivalent limiting distributions of the approximate conditional expectation and

variance for the first-stage and second-stage model as φ→ 0 in the first-stage model.

(a) lim
φ→0

E(Z1(θ, U0)|Z1(θ, U)) = lim
φ→0

E(Z2(θ, U0)|Z2(θ, U))

(b) lim
φ→0

E(Z1(θ, U0)|Z1(θ, U)) = lim
τ→0

E(Z2(θ, U0)|Z2(θ, U))

(c) lim
φ→0

Var(Z1(θ, U 0)|Z1(θ, U)) = lim
τ→0

Var(Z2(θ, U 0)|Z2(θ, U))

Proposition 1. The following propositions lead to the results of Lemma 1:

(a) lim
φ→0

E(Z1(θ, U0)|Z1(θ, U)) = X(s0)
′β

Proof: As φ → 0, the correlation between Z(s0) and Z(s) goes to 0. Therefore,

R01 → 0 and R11 → I, and the limit of the conditional expectation is

lim
φ→0

E(Z1(θ, U 0)|Z1(θ, U)) = lim
φ→0

{X(s0)
′β + R01R

−1
11 (Z(s) − X(s)′β)}

= X(s0)
′β

(b) lim
φ→0

E(Z2(θ, U0)|Z2(θ, U)) = X(s0)
′β

Proof: Again, as φ → 0, R01 → 0 while R11 → I. From (51), the limit of the

conditional expectation for the second-stage model is

lim
φ→0

E(Z2(θ, U0)|Z2(θ, U)) = lim
φ→0

{X(s0)
′β + τR01(τR11 + I)−1(Z(s) − X(s)′β)}

= X(s0)
′β
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(c) lim
τ→0

E(Z2(θ, U0)|Z2(θ, U)) = X(s0)
′β

Proof: As τ → 0, τR01 → 0 and (τR11 + I) → I. Therefore,

lim
τ→0

E(Z2(θ, U0)|Z2(θ, U)) = lim
τ→0

{X(s0)
′β + τR01(τR11 + I)−1(Z(s) − X(s)′β)}

= X(s0)
′β

(d) lim
φ→0

Var(Z1(θ, U 0)|Z1(θ, U)) = 1

Proof: As φ→ 0, R01 = R′
10 → 0 while R11 → I. Therefore, from (50), the limit of

the conditional variance is

lim
φ→0

Var(Z1(θ, U 0)|Z1(θ, U)) = lim
φ→0

{1 − R01R
−1
11 R10}

= 1.

(e) lim
φ→0

Var(Z2(θ, U 0)|Z2(θ, U)) = τ + 1

Proof: As φ→ 0, R01 = R′
10 → 0 while R11 → I. Therefore, from (51), the limit of

the conditional variance is

lim
φ→0

Var(Z2(θ, U 0)|Z2(θ, U)) = lim
φ→0

{(τ + 1) − τ 2R01(τR11 + I)−1R10}

= τ + 1.

(f) lim
τ→0

Var(Z2(θ, U 0)|Z2(θ, U)) = 1

Proof: From Proposition 1(e), φ→ 0 does not result in the same limiting distribution

of the conditional variance under the second-stage model as the first stage model. As

τ → 0, however, τR01 → 0 and (τR11+I) → I. Therefore, the limit of the conditional

variance is

lim
φ→0

Var(Z2(θ, U0)|Z2(θ, U)) = lim
τ→0

{(τ + 1) − τ 2R01(τR11 + I)−1R10}

= 1.
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The proof of Proposition 1(f) does not depend on the value of φ indicating that τ → 0 is

sufficient for equivalence in the conditional variances of the two models in Lemma 1(c).

The simulation results of Section 4.2 indicated that the first-stage and second-stage model

become more similar in terms of estimating φ as τ increases in the second-stage model.

This is because the nugget is fixed to 1 for identifiability of the probit model and will

become negligible relative to τ , the spatial component of the variance, as τ increases. Our

investigation of τ lead us to the following Lemma:

Lemma 2. Limiting distributions of the approximate conditional expectation and variance

of the second-stage model as τ → ∞.

(a) lim
τ→∞

E(Z2(θ, U 0)|Z2(θ, U)) = E(Z1(θ, U 0)|Z1(θ, U))

Proof: As τ → ∞, (τR11 + I) → τR11. Therefore,

lim
τ→∞

E(Z2(θ, U0)|Z2(θ, U)) = lim
τ→∞

{X(s0)
′β + τR01(τR11 + I)−1(Z(s) − X(s)′β)}

= lim
τ→∞

{X(s0)
′β + τR01(τR11)

−1(Z(s) − X(s)′β)}

= X(s0)
′β + R01R

−1
11 (Z(s) − X(s)′β)

= E(Z1(θ, U 0)|Z2(θ, U))

(b) lim
τ→∞

Var(Z2(θ, U0)|Z2(θ, U)) = ∞

Proof: For fixed φ,

lim
τ→∞

Var(Z2(θ, U0)|Z2(θ, U)) = lim
τ→∞

{(τ + 1) − τ 2R01(τR11 + I)−1R10}

= lim
τ→∞

{1 + τ(1 − R01R
−1
11 R10)}

= ∞.

Therefore, the approximate conditional expectation is equivalent under the two models as

τ → ∞. However, the conditional variance in the second-stage model goes to ∞ as τ → ∞.
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To estimate the ordinal response variable at a new location given the observed data using

the approximation (48), we need to compute

E(Y (s0)|y(s)) ≈
K∑

k=1

kP (λk ≤ Z(s0) < λk+1|Z(s)).

If P (λk ≤ Z(s0) < λk+1|Z(s)) for each k = 1, . . . , K under two different models, we say that

the models are equivalent in their approximate prediction of Y (s0).

Theorem 1. Let the spatial range parameter, φ, and the coefficients, β1, . . . , βp, be equal

under the first-stage and second-stage model. Define β01 and λ1 as the intercept and threshold

vector of the first-stage model, and assume τ1 = 1 for identifiability. There exists an intercept,

β02, threshold vector, λ2, and partial sill, τ2 < ∞, under the second-stage model such that

E(Y2(s0)|Z2(s)) = E(Y1(s0)|Z1(s)).

This is an important results for two reasons. First, the approximated kriging estimate

at an unobserved location given the sample data will be the same under the two models.

Second, the models result in the same parameter inference for the coefficients of the fixed

effects and the spatial range. To prove Theorem 1, we first assume that the parameters of

the first-stage model, β1, φ1, λ1, and τ1, are fixed and known where β1 = (β01, β11, . . . , βp1),

λ1 = (λ11, . . . ,λ(K+1)1), and τ = 1. We will show that the second-stage spatial model has

equivalent prediction when (β12, . . . , βp2) = (β11, . . . , βp1) and φ2 = φ1. The conditional

expectation of Z(s0) is equivalent under the first-stage and second-stage model as τ → ∞

(Lemma 2(a)). This implies that for ε > 0, there exists τε < ∞ such that

|E(Z2(θ2, U 0)|Z2(θ2, U)) − E(Z1(θ1, U0)|Z1(θ1, U))| < ε (52)
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where θ2 = (β, τ = τε, λ) and θ1 = (β, τ = 1, λ). This is important step since under the

second-stage model the conditional variance of Z(s0) → ∞ as τ → ∞ (Lemma 2(b)). The

conditional variance under the second-stage model is finite by setting τ = τε.

To show equivalence in prediction of the two models, we need

Φ

(
λk − E(Z2(θ2, U 0)|Z2(θ2, U))√

Var(Z2(θ2, U 0)|Z2(θ2, U))

)

= Φ

(
λk − E(Z1(θ1, U 0)|Z1(θ1, U))√

Var(Z1(θ1, U 0)|Z1(θ1, U))

)

(53)

for k = 1, . . . , K +1. We define the intercept and threshold vector of the second-stage model

as

β02 =

√
Var2√
Var1

E1 − (β1X1(s0) + · · · + βpXp(s0))

− τR01(τR11 + I)−1(Z(s) − (β1X1(s) + · · ·+ βpXp(s))

(54)

and

λk2 = λk1

√
Var2√
Var1

(55)

for k = 1, . . . , K + 1, where m denotes the stage of the spatial model, τ = τε,

Em = E(Zm(θm, U 0)|Zm(θm, U)), and Varm = Var(Zm(θm, U0)|Zm(θm, U)). Therefore,

we compute

P (Z2(θ2, U 0) < λk2|Z2(θ2, U))

for k = 1, . . . , K by plugging in (54) and (55) into (53). Starting with plugging (55) in for

λk2, we have
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P (Z2(θ2, U 0) < λk2|Z2(θ2, U)) = Φ

(
λk2 − E2√

Var2

)

= Φ

(
λk1

√
Var2√
Var1

− E2
√

Var2

)

= Φ

(
1√
Var2

(
λk1

√
Var2√
Var1

−
(
β02 + β1X1(s0) + · · ·+ βpXp(s0)

)

+ τR01(τR11 + I)−1
(
Z(s) −

(
β021 + β1X1(s) + · · ·+ βpXp(s)

))))
.

Then, plugging (54) in for β02,

P (Z2(θ2, U 0) < λk2|Z2(θ2, U))

= Φ

(
1√
Var2

(

λk1

√
Var2√
Var1

−
√

Var2√
Var1

E1

−
(
β1X1(s0) + · · ·+ βpXp(s0)

)
− τR01(τR11 + I)−1

(
Z(s) −

(
β1X1(s) + · · · + βpXp(s)

))

+
(
β1X1(s0) + · · ·+ βpXp(s0)

)
+ τR01(τR11 + I)−1

(
Z(s) −

(
β1X1(s) + · · ·+ βpXp(s)

))
))

= Φ

(
1√
Var2

(

λk1

√
Var2√
Var1

−
√

Var2√
Var1

E1

−
(
β1X1(s0) + · · ·+ βpXp(s0)

)
− τR01(τR11 + I)−1

(
Z(s) −

(
β1X1(s) + · · · + βpXp(s)

))

+
(
β1X1(s0) + · · ·+ βpXp(s0)

)
+ τR01(τR11 + I)−1

(
Z(s) −

(
β1X1(s) + · · ·+ βpXp(s)

))
))

.

The last two lines cancel and we are left with

Φ

(
λk2 − E2√

Var2

)
= Φ

(
λk1 − E1√

Var2

)
.

Therefore,
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P (λk2 ≤ Z2(s0) < λ(k+1)2|Z2(s)) = P (λk1 ≤ Z1(s0) < λ(k+1)1|Z1(s))

for all k which implies

E(Y2(s0)|Z2(s)) = E(Y1(s0)|Z1(s)).

Theorem 1 holds for binary data as well where both threshold vectors, λ1 and λ2 are

fixed and only the intercept terms differ.

Whereas we assume an exponential covariance function for the spatially structured stochas-

ticity in the model, the theoretical results of this section hold for most isotropic parametric

covariance functions. One notable exception is the spherical covariance function. Lemma 1

does not hold for the spherical covariance function because R01 → 1 and R11 → J as φ→ 0.

However, both Lemma 2 and Theorem 1 do hold for the spherical covariance function.

4.5 Discussion

The simulation results in Section 4.2 and the theoretical results in Section 4.4 both

indicate that the second-stage spatial model, or spatial PLMM, is more flexible than the first-

stage model for ordinal data. This is because the spatial PLMM allows for both spatially-

correlated and independent components of stochasticity in the ordinal, or binary, response.

In practice, estimation and parameter inference under the first-stage model can be mimicked

by the PLMM where the converse is not true. This was illustrated in Section 4.2 when

the first-stage model poorly estimated the spatial range parameter, φ, when the data were

generated under the second-stage model. However, when the data were generated under the

first-stage model, the second stage model was able to capture the spatial range parameter

equally well as the first-stage model. We noticed in the log-likelihood surfaces (Figure 4.4)

for binary response data that the estimate of the partial sill parameter, τ , was large to

compensate for the data being generated under no-nugget first-stage model. Our simulation

results directly correspond to our theoretical results in Section 4.4 since for large values of

140



τ , the approximate prediction and parameter inference under the second-stage spatial model

can be equivalent to that of the first-stage spatial model.

This analysis motivates an important recommendation for those modeling binary and

ordinal data. We advocate that the first-stage spatial model is only appropriate when it

can be assumed that the binary or ordinal spatial response surface contains only spatially-

correlated stochasticity. Even then, the second-stage spatial model can perform equally well

in estimating the range parameter as the first-stage spatial model and make comparable

predictions of the ordinal response variable at an unobserved location. Therefore, we recom-

mend fitting the more general flexible second-stage spatial probit model because it is equally

good or better than the first-stage spatial probit model for spatially-correlated binary and

ordinal data.
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CHAPTER 5

MULTILEVEL LATENT GAUSSIAN PROCESS MODEL FOR MIXED

DISCRETE AND CONTINUOUS MULTIVARIATE RESPONSE DATA

5.1 Introduction

Latent variable modeling has become common practice in a variety of scientific research

fields where the latent variables are not directly observed but instead inferred from other

values that are observed. These models are particularly relevant when the observed data are

assumed to be driven by some underlying, unobservable process. Oftentimes in the biological

and ecological sciences, for example, multiple measurements are reported for each sampling

unit or at each sampled location within a spatial domain and the goal is to understand

the underlying latent variable(s) generating the measurements. Here, these measurements

make up a multivariate response. In spatial statistics, a latent variable could be used to

model a random field, or process. Chakraborty et al. (2010) applied a latent spatial process

model to model species abundance across a large region of South Africa. Christensen and

Amemiya (2002) developed a general framework for multivariate latent variable models that

incorporates spatial correlation among the latent variables.

We focus on ordered categorical, or ordinal data where measurements for each observation

are reported on a specified scale, (e.g., low, medium, high). Some discrete data are ordinal in

nature. For example, in survey data, respondents are asked to characterize their opinions on a

Likert scale ranging from strongly disagreeing to strongly agreeing. In other situations, data

will be ordinal when a researcher reports the response as a discretized continuous variable

instead of as the actual continuous variable due to constraints on the data collection process.
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This may be the case when reporting sediment size in streams or surface area of leaves on

individual plants, especially when the data are to be collected over a large spatial domain.

We propose a model for drawing inference about mixed ordinal and continuous multi-

variate response data. We refer to the model as a multilevel latent process model because

we introduce latent variables at two levels within the hierarchy. The first level of latency is

introduced by assuming there is a continuous latent process that generates each variable of

the multivariate response. The model extends the multivariate latent health factor model

proposed by Chiu et al. (2011) by allowing dependence on the site effect to vary across

response variables.

The second level of latency is introduced by assuming there exists an underlying uni-

variate latent spatial process, or latent random field, that is generating the multivariate

response. We assume a linear relationship between each of the latent continuous response

processes (first level of latency) and the latent spatial process (second level of latency). Re-

fer to Figure 5.1 for a diagram of the multilevel latency. This model provides estimates of

the latent spatial process in order to compare different locations within a specified region

of interest. Second, the model allows quantification of the relationship between the spatial

latent variable and each of the variables of the multivariate response. Lastly, we can deter-

mine which of the variables of the multivariate response are most closely associated with the

latent spatial process. In doing so, we can establish weights for each of the response variables

to be used in weighted averaging for estimating the underlying latent spatial process. By

incorporating point-referenced covariate information, we can predict the value for the latent

spatial variable as well as the mixed ordinal and continuous multivariate response at new

locations.

In Section 5.2 we motivate the model with an application of assessing the condition of

wetlands in Colorado. In Section 5.3 we introduce the mixed ordinal and continuous multi-

variate latent Gaussian process model; we also describe methods of inference and estimation

of the model parameters under the Bayesian framework. In Section 5.4 we develop methods
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to predict the latent random variable and ranking procedures for the multivariate response.

The methodology is applied in Section 5.5 through the evaluation of wetland condition in

the North Platte and Rio Grande River Basins of Colorado. Section 5.6 concludes with a

brief discussion and recommendations for future work.

5.2 Motivating example

The proposed model was motivated by a program to asses the condition of wetlands in

Colorado. Limited data exist on the location, type, and condition of Colorado’s wetlands

hindering wetland management. The long-term viability and integrity of Colorado’s wet-

land resources are threatened due to increased demand from major urban areas for water

development and storage projects, growth in the oil and gas industry, and changes in forest

health (Dahl, 2011). The data considered here were collected through a partnership between

Colorado Parks and Wildlife (CPW)’s Wetlands Program and the Colorado Natural Her-

itage Program (CNHP) to assess the condition of wetlands in Colorado. The specific data

used in this model were collected in Colorado’s North Platte and Rio Grande River Basins

(Lemly et al., 2011; Lemly and Gillian, 2012). One of the major goals of the CPW-CNHP

partnership is to model the spatial distribution of wetland ecological condition throughout

each river basin in the state. Our goal was to improve spatial modeling techniques in order

to help land managers effectively maintain and improve critical wetland habitats.

In order to implement effective wetland protection strategies and to establish restoration

and management plans, wetlands must be assessed and then potential threats or stressors

identified. There are many different in-field measurements, known as metrics, that reflect

various aspects of wetland condition. These metrics can be of any variable type including

continuous, count data, ordinal, etc. Overall scores that are computed based on multiple

measurements are referred to as multi-metric indices. When the metrics are of the same

variable type, one index to evaluate overall wetland condition is an average metric score.

However, difficulty arises when trying to compute an index that encompasses metrics of dif-
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ferent variable types. In this work, we propose using continuous latent variables as consistent

measures across all metric types. Appropriate link functions can map the continuous latent

variables to the different metrics.

One popular index that incorporates 12 metrics to evaluate ecological condition is the

index of biotic integrity, or IBI (Karr, 1981). It is of great interest to ecologists to determine

whether the particular metrics that are used in computing the IBI are useful in evaluating

wetland condition. Of equal importance, ecologists are interested in identifying which of

the measurements taken during in-field data collection are most representative of overall

wetland condition. This is beneficial as it will not only increase accuracy in gauging wetland

condition but will also save time and resources for future data collection by requiring fewer

measurements.

There are tens of thousands of acres of reported wetlands in Colorado’s North Platte and

Rio Grande River Basins and sampling time and resources are limited. One of the major goals

of the wetland profiling project is to model the spatial distribution of the ecological condition

of wetlands throughout the basins and determine the optimal metrics for measuring key

habitat features for wetland-dependent wildlife species. We compare the ecological condition

of the wetlands based on five metrics in both the North Platte and Rio Grande River Basins.

5.3 Model and inference

5.3.1 Multivariate mixed response data

One of the main goals of this work is to use observed mixed ordinal and continuous

multivariate responses from a finite number of point-referenced locations to draw inference

on an underlying latent spatial process. We wish to make predictions of the latent spatial

process as well as quantify uncertainty. The model consists of first representing each of the

multivariate response variables as a continuous response. For the ordinal response variables,

this continuous response is latent. We then define a linear relationship between each of the
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(latent) continuous response variables and the underlying latent spatial process of interest.

We assume that each of the response variables contains information about this latent spatial

process. Refer to Figure 5.1 for a diagram of the multilevel latent model.

For the spatial domain of interest, D, define {Y (s) = [Y1(s), . . . , YJ(s)], s ∈ D} as a

mixed ordinal and continuous multivariate random field at location s having J responses.

Each response at location s, {Yj(s), s ∈ D} for j = 1, . . . , J is modeled by a random field

of either continuous or ordinal values. Let Jc denote the number of continuous response

variables and Jo denote the number of ordinal response variables, where Jo ≥ 1. Therefore,

J = Jo + Jc. For all ordinal variables variables j in 1, . . . , Jo, the observable response

Yj(s) ∈ {1, . . . , K} for every location s. The model can easily be generalized to include

observable response variables with varying number of categories, e.g. Yj(s) ∈ {1, . . . , Kj}.

In such a case, parameter constraints, discussed below, will need to be modified to maintain

model identifiability.

We assume there exists an underlying continuous multivariate Gaussian process, {Z(s) =

[Z1(s), . . . , ZJ(s)], s ∈ D}, that over the region of interest is generating Y (s). Dropping the

dependence on s for ease of notation, we denote Y = [Y 1, . . . , Y J ] and Z = [Z1, . . . , ZJ ]

where respectively Y j and Zj are the jth observable response and underlying continuous

Gaussian process. For j = 1, . . . , J , we define Fj as the mapping of the continuous variable

Zj to the observable response Y j . Whereas the observable response data presented in this

work are continuous and ordinal, the model holds for other types of response variables, e.g.

binary, Poisson, etc. The mapping function Fj can take on any form as long as it is reasonable

to assume that an underlying continuous Gaussian process is generating the response. For

an ordinal response, the continuous variable Zj is latent. Here, the mapping Fj is defined

as a function with parameter vector λj , a ((K + 1) × 1)-dimensional vector of thresholds,

that assigns the latent continuous random variables Zj to the ordered categories 1, . . . , K

of the observable data Y j (Muthen, 1984). The threshold parameter vector is constrained

such that −∞ = λj,0 ≤ λj,1 ≤ . . .λj,K = ∞ for each ordinal metric. We define a mapping,
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Fj , of Zj(s) to Yj(s) as

Yj(s) = Fj(Zj(s), λj) =
K∑

k=1

kI{λj,k−1<Zj(s)≤λj,k}, j = 1, . . . , Jo, s ∈ D. (56)

For continuous response variables, the mapping Fj is taken as the identity function since Zj

would be observed directly.

5.3.2 Multilevel latency

We assume that the latent random process is expressed by a mixed model. For the jth

random process, Zj , we assume a multivariate Gaussian process where

Zj ∼ GP (θj1 + ωjH , σ2
j I). (57)

We define the mean of each Zj as a metric-specific linear combination of the 1-vector and a

latent random field H . The latent random field H is the process of interest and encompasses

the latent measure of wetland condition in our application. The fixed effect θj is the intercept

for metric j and the fixed effect ωj is the factor loading of the spatial random field H .

Both θ and ω are (1 × J)-dimensional vectors. The parameter ω allows us to quantify the

relationship between each of the response variables and H . The variance of Zj is specific to

each metric j, which we define as σ2
j I where I is the identity matrix. For j *= l, Zj and Z l

are conditionally independent given H , θ, and ω.

The spatial dependence of the multivariate random field is modeled through the latent

spatial process, H . Note that the inclusion of the additional latent process H makes this

a multilevel latent process model. We assume this latent spatial process is driving the

mixed ordinal and continuous multivariate observable response, Y . Therefore, H provides

a univariate summary measure for each location from which we will draw inference across

space. We assume H to be a Gaussian process with covariates in the mean structure and a
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Figure 5.1: Diagram of a multilevel latent model with two ordinal observable response
variables Y 1 and Y 2 and a continuous observable response variable Y 3. Here, Z1, Z2, and
Z3, represent the first level of latency as the latent continuous response variables. H is the

second level of latency and is the latent spatial random field of interest. There are 4
covariates in the model, X1, X2, X3, and X4. The " indicates an observable value and
the ! indicates a random variable. Additional parameters are shown next to the links.

covariance matrix defined by a spatial correlation function. Let

H ∼ GP (Xβ, ΣH(φ)) (58)

where X contains p location-specific observable covariates and β is a p × 1 vector of coeffi-

cients. The covariance matrix ΣH(φ) is described by a function ΣH(φ) = ρ(||si − sl||; φ)

where ρ is a covariance function with parameters φ that produces a valid covariance matrix

depending only on the spatial distance matrix.
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5.3.3 Bayesian framework

The observed multivariate data matrix y is of dimension n× J where n is the number of

point-referenced locations in our sample and J is the number of metrics or responses at each

location. For i = 1, . . . , n and ordinal response variables j = 1, . . . , Jo, the density of yij is

the integral from λj,yij−1 to λj,yij
of the normal distribution defined for Zij. Whereas we first

defined Zj as a Gaussian process for each j = 1, . . . , J , realizations of these processes have

a multivariate normal distribution. Denoting the multivariate ordinal observed response

yo = [y1, . . . , yJo
], we write the likelihood of the jth vector of Jo, yj , as the integral of an

n-dimensional multivariate normal distribution. Therefore

po(yj |H, θj ,ωj, λj , σ
2
j ) =

∫ λj,y1j

λj,y1j−1

· · ·
∫ λj,ynj

λj,ynj−1

(2π)−n/2|σ2
j In|−1/2

× exp

{
−

1

2
[Zj − (θj1 + ωjH)]

′
[σ2

j In]
−1[Zj − (θj1 + ωjH)]

}
dZj.

(59)

For the multivariate continuous observed response yc = [y1, . . . , yJc
] , the likelihood of the

jth vector of yc is the multivariate normal density, pc. Denoting y = [yo, yc], the likelihood

for all observations is given by

p(y|H, θ, ω, λ, σ2) =
Jo∏

j=1

po(yj |H , θj,ωj, λj, σ
2
j ) ×

Jc∏

j=1

pc(yj |H , θj,ωj, σ
2
j )

We define prior distributions for all model parameters and latent random variables to com-

plete the Bayesian model specification. We aim to assign proper yet vague prior distributions

to unknown parameters to maintain generality of the model. When applicable, conjugate

priors are assigned to ease computational complexity.

To ensure identifiability of the intercept parameter vector θ, it is necessary to place a

restriction on one of the threshold parameters. Where the lower and upper cut points are

defined as λj,0 = −∞ and λj,K = ∞, we assume without loss of generality that λj,1 = 0

for j = 1, . . . , Jo. Therefore, we are left to estimate Jo × (K − 2) threshold parameters. A
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uniform prior can be assigned to the cut parameters as shown by Albert and Chib (1993),

where p(λj,k|λj,k−1,λk,k+1) ∝ I(λj,k−1,λj,k+1), for k = 2, . . . , k − 1 and j = 1, . . . , Jo. However,

the constraint that λj,k−1 ≤ λj,k can lead to poor mixing in the Markov chain. We transform

the parameter λj,1, . . . ,λj,k−1 to a new space with parameters αj,1, . . . ,αj,k−1 (Albert and

Chib, 1997). The transformation is performed by setting αj,1 = λj,1 = 0, αj,2 = log(λj,2),

and letting αj,k = log(λj,k − λj,k−1) for k = 3, . . . , K − 1. The inverse transformation is

expressed as λj,k =
∑k

i=2 eαj,i . We then impose an unrestricted multivariate normal prior

distribution to the ((K − 2) × 1)-dimensional vector α for each j = 1, . . . , Jo with mean a

and covariance matrix A.

As denoted above, each of the latent response vectors Zj for j = 1, . . . , J is a Gaussian

process with mean θj1+ωjH and covariance matrix σ2
j I. Due to the multivariate multilevel

latent structure of the model, some parameters will be fixed to ensure identifiability of the

other parameters of interest. When the threshold vectors are metric-specific, as shown in

(56), the scale parameter, σ2
j , for j = 1, . . . , Jo of the covariance of the continuous multivari-

ate random variables Zj will have to be fixed (Skrondal and Rabe-Hesketh, 2004). When all

of the ordinal metrics have the same number of categories, the threshold parameter vector λ

can be assumed the same across all metrics. In this case, the parameter σ2 is identifiable for

the ordinal metrics if just one element, σ2
j is fixed. Fixing thresholds to be equal for all met-

rics is not overly restrictive when the number of categories of the ordered response is small.

Indeed, it can be helpful when some of the metrics have few responses in some categories.

Also, the mean and variance of the latent continuous response are able to vary across metrics

which allows the model to be flexible. However, this assumption becomes more restrictive

as the number of categories per metric increases because the model may not be sufficiently

flexible to preserve the proportions in each category for the different metrics. Without loss

of generality, we set the variance of the first ordinal response variable, σ2
1 = 1 and drop the

metric dependence on the thresholds. The remaining parameters, σ2
j for j = 2, . . . , J , are

assigned inverse-Gamma prior distributions with hyper-parameters az and bz.
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The mean of the distribution of the latent process H is defined as Xβ, where the

covariate matrix X is centered and scaled and does not include the one vector in order to

estimate θ in (57). The conjugate prior distribution for the p × 1 vector β is N(0, σ2
βIp).

Let ΣH(φ) be the covariance of the distribution of H where the vector φ represents the

parameters of the covariance function. Here we choose an exponential covariance function

and write ρ(si − sl; φ) = φ1 exp−dilφ2 where dil represents the Euclidean distance between

locations i and l. The conjugate inverse-Gamma prior distribution is assigned to φ1 and a

Gamma prior distribution is assigned to φ2. The shape and scale hyper-parameters of these

distributions are aφ1 and bφ1 and aφ2 and bφ2 , respectively. For identifiability, however, φ1 is

set to 1 when all response variables are ordinal. Specification of the prior distribution of φ2

and its corresponding hyper-parameters can be challenging and must be chosen with careful

consideration to keep it non-informative. (see e.g., Schmidt et al., 2008).

The parameters θ and ω are each assigned a multivariate normal prior distribution with

mean vector 0 and covariance matrix σ2IJ . The scale parameters of both covariance matrices,

σ2
θ and σ2

ω, are chosen to be large such that the prior distributions are vague. To ensure

identifiability of the model parameters one value of the (1 × J)-dimensional vector ω must

be fixed. Without loss of generality we set ω1 = 1. Fixing ω1 establishes a point of reference

for the relationship between Z and the parameter of interest, H .

5.3.4 Inference

We make inference about the parameters of the model using the Bayesian paradigm

incorporating Gibbs and Metropolis-Hastings sampling techniques. This approach allows

estimation of both the model parameters and the multilevel and multivariate latent variables,

as well as their uncertainty. Due to the constrained threshold parameter vector λ, the model

proposed in this work is computationally complex.
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The joint posterior distribution of the unknown parameters of interest and the latent

variables given the observed data can be factored and written as

p(Z, θ, ω,H, λ, σ2, β, φ|y) ∝ p(y|Z, θ, ω,H,λ, σ2, β, φ)p(Z|θ, ω,H, λ, Σ, β, φ)

× p(H|β, φ)p(θ, ω, λ, σ2, β, φ)

where p(y|·) is the distribution of the mixed ordinal and continuous multivariate random

variables given the model parameters and latent variables, p(Z|·) is the conditional dis-

tribution of the continuous latent random variable, p(H|β, φ) is the distribution of the

latent spatial field of interest, and p(θ, ω, λ, σ2, β, φ) is the joint prior distribution for the

parameters θ, ω, λ, σ2, β, and φ.

The Markov chain Monte Carlo (MCMC) algorithm proceeds as follows:

1. Update the spatial covariance scale and range parameters, φ1 and φ2, respectively.

Parameter φ1 can be drawn drawn directly from its complete conditional distribution

whereas φ2 requires a Metropolis-Hastings step to sample from its complete conditional

distribution.

2. Update the regression parameter vector β and the latent spatial multivariate normal,

H , from their complete conditional distributions.

3. Update the metric-specific parameters θ and ω and variance parameter σ2 each in

block form from their complete conditional distributions.

4. Update the threshold parameters, λ by drawing α from p(α|yo, Zo) and inverse

mapping to get λ. See Higgs and Hoeting (2010) for explicit details on the re-

parameterization and updating scheme for λ.

5. Update the latent multivariate normal Zo from the complete conditional distribution.

The samples from the posterior distribution can then be used to draw inference on both the

model parameters and latent variables.
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5.4 Posterior inference

5.4.1 Posterior prediction

The model can be used to make predictions for the mixed ordinal and continuous mul-

tivariate response as well as the underlying latent spatial process at unobserved locations.

The multivariate response at m unobserved locations will be denoted Ỹ = [Ỹ 1, . . . , Ỹ J ]

where Ỹ j = [Ỹ1j , . . . , Ỹmj]′. Similarly, predictions of the latent spatial process at the m un-

observed locations will be written as H̃ = [H̃1, . . . , H̃m]′. Predictions can be made using the

Bayesian posterior predictive distributions p(Ỹ |y) and p(H̃|y) for the multivariate response

and latent spatial process, respectively.

In most applications, the value of the latent variable Hi at location i will be inconse-

quential but the comparison of H across locations may be of interest. For example, wetland

condition encompasses many variables. If a latent variable Hi summarizes wetland condition

at site i, comparisons among sites will be useful to many agencies and individuals. For each

location, we obtain draws from the distributions Hi|y and H̃i|y for each iteration of the

Markov chain. We then examine the distribution of the posterior ranks for each location to

draw inference and conduct comparisons across the region of interest.

Other model parameters of particular interest include the parameters of the latent spatial

field H , β and φ, as well as the metric-specific parameters of Z, ω, and σ2. Estimating the

parameter vector of coefficients of the linear model, β, enables us to evaluate the relationship

between the point-referenced covariates and the latent random variable H . The unaccounted

for spatial correlation of the latent random variable H can be estimated by drawing inference

on φ1 and φ2 as well as the effective range, 3/φ2. The effective range is the distance at which

the correlation function does not exceed 0.05 times the variance.
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5.4.2 Multivariate correlation statistics

We estimate the relationship between latent variables Z = [Z1, . . . , ZJ ] and H by com-

puting multiple correlation values. Due to the deterministic relationship between latent Z

and observed Y , we assume that the relationship we are estimating will capture that of the

relationship between H and the multivariate response Y . This is a method used in canonical

correlation analysis to evaluate the level of linear relationship between two sets of variables

(Rencher, 2002). It is useful to first partition the covariance matrix of the matrix Z and

vector H as

S =




SZZ SZH

SHZ SHH



 (60)

where SZZ is the J × J sample covariance matrix of Z, SZH is the J × 1 matrix of sample

covariances between Z and H , and SHH is the sample covariance of H . The (j, j′) element

of SZZ is the covariance between the (n × 1)-dimensional vectors Zj and Zj′. Similarly,

the jth element of SZH is the covariance between the (n × 1)-dimensional vectors Zj and

H . A measure of association between Z and H as a whole is R2
M = |S−1

ZZSZHS−1
HHSHZ |.

This value is analogous to R2 in linear regression. This value can also be expressed in terms

of the canonical correlations between Z and H . However, we would like to evaluate the

correlation between each of the responses and H separately. The correlation between Zj

and H is defined as the square root of

R2
Zj |H = SZjHS−1

HHSHZj
S−1

ZjZj
(61)

where SZjH is the jth element of SZH , SHZj
is the jth element of SHZ , and SZjZj

is the jth

element of the diagonal of SZZ .

We evaluate the multiple correlation for each metric using the posterior simulations.

Therefore, at each simulation draw of the model parameters, we first compute the covariance

matrix S. Then, for j = 1, . . . , J , we compute the correlation between the posterior draw of
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Zj and H using (61). Larger values of RZj |H (i.e., closer to 1) suggest that metric j is more

correlated with the underlying latent variable H . In application, a large RZj |H value means

that metric j is a good measurement or predictor for the unobserved latent spatial process.

We use the multiple correlation values to rank the importance of each of the response metrics

in measuring the latent spatial process of wetland condition. Further details on the multiple

correlation statistic are given in Section A.5

5.4.3 Model evaluation

Mixed ordinal and continuous multivariate response models present a unique problem

for model evaluation. Whereas there are multiple methods to measure predictive ability

for discrete response models or continuous response models, the difficulty arises when we

wish to compare mixed response models with both continuous and discrete variables. Multi-

category loss functions like those presented by Higgs and Hoeting (2010) cannot be applied

when Jc *= 0. Therefore, we direct our attention to loss functions for continuous data

since we have a continuous latent variable for all J metrics. In the Bayesian framework,

the loss is computed by comparing the true value to draws from the posterior predictive

distribution. Therefore, we first need to determine the “true" value for the ordinal variable

on the continuous scale. The posterior mean or median of the latent continuous response

could be used as the “true" value but we feel this favors the discrete response metrics. We

propose setting the “true" value for the continuous representation of the observed ordinal

variable y as the value Ẑ such that

∫ Ẑ

λy−1

1√
2πσ2

z

exp
−1
2σ2

z
(Z−µz)2

dZ

∫ λy

λy−1

1√
2πσ2

z

exp
−1
2σ2

z
(Z−µz)2

dZ
= 0.50 (62)
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where µz and σ2
z are the mean and variance of the posterior distribution of Z, respectively.

Therefore, Ẑ is the 50th percentile of the estimated normal distribution between the thresh-

olds λy−1 and λy. We can estimate both µz and σ2
z for i = 1, . . . , n and j = 1, . . . , Jo using

the posterior draws of the parameters ωj, θj , Hi and σ2
j . We apply this method to perform

model comparison in Section 5.5 under squared error loss.

5.5 Assessing wetland condition

5.5.1 Data and model specification

The data were collected at 95 locations within the North Platte River Basin and 137

locations within the Rio Grande River Basin, resulting in n = 232 locations (Figure 5.2). The

surveyed parcel consisted of a 0.5-hectare area around each target location. These locations

were sampled randomly using a Generalized Random Tessellation Stratified (GRTS) survey

design (Stevens and Olsen, 2004). Details of the GRTS design differed between the basins

(Lemly et al., 2011; Lemly and Gillian, 2012). We applied the multivariate multilevel latent

Gaussian process model to each river basin separately and to the basins together and reached

similar conclusions. The results presented here are those from the river basins modeled

together as one data set.

The data include measurements to evaluate the biotic integrity of the wetland, as well as

the surrounding landscape, soil, and water conditions. Here we apply our multilevel latent

model to evaluate the biotic integrity of wetlands. We refer to the biotic integrity as a proxy

for wetland condition because it is the biotic condition that drives the overall condition of

the wetland. Five measurements, or metrics, were derived from detailed vegetation surveys

conducted at each field location. The five metrics include native plant cover, noxious weed

cover, aggressive native cover, structural complexity, and floristic quality assessment (Lemly

and Gillian, 2012). It is assumed that each of these metrics represents a component of

the biotic integrity of the wetland. It is current practice for wetland condition assessment
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to use a method of weighted averages to evaluate the biotic condition using these metrics.

Whereas these weights are often thought to be assigned based on best professional judgement

or without statistical support, our goal is to use the data within the multivariate multilevel

latent Gaussian process model to rank the metrics in a hierarchy of most important to least

important to assess wetland condition. We can then identify a subset of the metrics that are

most valuable for future data collection.

Each metric was reported on a five-category ordinal scale from “poor" to “excellent,"

to which we assign integer values from 1 to 5, respectively (Appendix A.3). The floristic

quality assessment, native plant cover, noxious weed cover, and aggressive native cover met-

rics are discretized continuous variables (see Lemly and Gillian (2012) for more details on

discretization). The floristic quality metric evaluates the overall floristic quality and fidelity

of the plant community at each location to natural, or undisturbed, conditions (Rocchio,

2007). Each species in the Colorado flora has been assigned a coefficient of conservatism

(C value: 0-10) that reflects the species tolerance or intolerance to disturbance (Swink and

Wilhem, 1994; Taft et al., 1997). The continuous value is an average of C values assigned

to the plants present at the wetland site. The ordinal value at each location is assigned by

applying a threshold to the continuous metric value. However, this thresholding scheme is

dependent on wetland type because the natural vegetation differs between wetland types

with some naturally containing plant species with lower values of floristic quality. Structural

complexity is Likert-like and has no tangible underlying continuous variable. Here, we fit a

discrete-only model with Jo = 5 and Jc = 0 as well as a mixed response model with Jo = 4

and Jc = 1 where the continuous metric is floristic quality and compare the results. For all

Jo ordinal responses, the observed value Yi ∈ {1, . . . , K = 5} for i = 1, . . . , 232.

The variance of Zi1 is fixed and held constant across all locations at σ2
1 = 1 for model

identifiability. The hyper-parameters of the inverse-Gamma distributions of the metric spe-

cific variance parameters σ2
j are az = bz = 1 for j = 2, . . . , 5. The metric-specific parameters

157



    



























    



























Figure 5.2: The n = 232 locations of observed data within the North Platte and Rio
Grande River Basins.

θ and ω are of dimension 1 × 5. We set the variance hyper-parameters σ2
θ = σ2

ω = 100. For

identifiability of the coefficient vector β, we fix ω1 = 1.

Elevation and percent of closed tree canopy vegetation are two continuous point-referenced

covariates used to model the mean of the Gaussian process H (Appendix A.3). We also in-

cluded wetland type as a categorical covariate with five levels: riparian shrublands and

woodlands, saline wetlands, marshes, wet meadows, and fens. The prior distribution of

the coefficient vector β is N(0, σ2
βIp) with σ2

β = 100 and p = 6. The exponential covari-

ance function for the latent random variable H is defined as φ1 exp−dilφ2 where dil is the

Euclidean distance between locations i and l. In the mixed response model, we assign an

Inv.Gamma(1, 1) prior for φ1 and fix φ1 = 1 in the discrete-only model. In Chapter 3 we

discussed identifiability of univariate response probit regression models for spatially corre-

lated ordinal data and concluded that Bayesian learning can exist for both parameters of the

exponential covariogram. However, due to the already complex structure of the model, we

fixed the partial-sill parameter in the discrete-only model in this work. Fixing the partial-sill

to 1 implies that for metric 1, where σ2 = 1, the amount of variation explained by the spatial
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process is the same as the noise for the metric. That is, the signal-to-noise ratio is 1 for

metric 1. In both models, φ2 is assigned a Gamma(2, 2) prior distribution. The prior of φ2

was chosen such that the effective range, 3/φ2, could reach the maximum distance between

sites.

5.5.2 Model results

The Markov chain Monte Carlo algorithm was run for 100,000 iterations using R soft-

ware (R Development Core Team, 2007). The first 10,000 iterations for both models were

discarded as burn-in. We ran multiple chains from different starting values to evaluate con-

vergence of our Gibbs sampler. The Gelman (2004) potential scale reduction factor for each

parameter was below 1.2. Similarly, other standard diagnostics showed no indications of lack

of convergence.

The posterior estimates from both the discrete-only model and the mixed response model

indicate that wetland condition scores are higher for locations at higher elevations and with

higher percentages of closed tree canopy (Table 5.1 for discrete-only response model, Table 5.2

for mixed response model). The coefficients β3, β4, β5, and β6 represent the effect for saline,

marsh, wet meadow, and fen wetland types, respectively, relative to riparian shrublands

and woodlands. These values vary greatly between models due to the discretization of the

floristic quality assessment metric. The discretization process includes additional information

about the condition of each site based on its wetland type and thus, the ordinal values for

this metric are not uniformly assigned across all locations (Lemly and Gillian, 2012). For

example, a riparian wetland with a floristic quality value of 5.6 on the continuous scale would

be assigned a 4 on the ordinal scale, whereas a marsh wetland with the same continuous value

would be assigned an ordinal value of 5. For this reason, the coefficients for marsh and saline

wetland type vary between the two models.

All estimates of the factor loading (57) ω are positive indicating that the linear relation-

ship between latent wetland condition and each of the individual metrics is positive (Tables

159



Table 5.1: Posterior estimates and 95% credible intervals for discrete-only model
parameters.

Parameter Estimate 95 % CI
β1 Elevation 0.54 (0.22, 0.89)
β2 Closed tree canopy 0.40 (0.20, 0.62)
β3 Saline 0.62 (0.16, 1.10)
β4 Marsh 0.60 (0.26, 0.97)
β5 Wet meadow -0.03 (-0.28, 0.21)
β6 Fen 1.00 (0.55, 1.53)
3/φ2 Effective Range 0.88 (0.45, 1.84)
ω1 Native plant cover 1.00
ω2 Noxious weed cover 1.37 (1.00, 1.90)
ω3 Aggressive native cover 2.54 (0.89, 6.01)
ω4 Structural diversity 0.21 (0.11, 0.33)
ω5 Floristic quality 1.59 (1.33, 1.91)
σ2

1 Native plant cover 1.00
σ2

2 Noxious weed cover 1.34 (0.86, 2.16)
σ2

3 Aggressive native cover 20.46 (8.00, 67.64)
σ2

4 Structural diversity 0.89 (0.67, 1.18)
σ2

5 Floristic quality 0.36 (0.22, 0.57)

5.1 and 5.2). Based on the 95% credible intervals these estimates are all significantly different

from 0.

The estimates of effective range of spatial correlation for the two models are comparable

at 88 and 67 km. The overall maximum distance between the 232 observed locations is

dmax = 470 km whereas the maximum distance within the North Platte and Rio Grande

River Basins is 93 km and 202 km, respectively. The minimum distance between sampled

locations from the two river basins is 240 km. Not surprisingly, the estimate of the effective

range indicates that the spatial correlation of wetland condition is only of interest within the

river basins and not between them.

To compare the performance of the discrete-only model to the mixed response model, we

compute the median squared error loss using the latent response Z. For the ordinal metrics,

we estimate the “true" value of Z using (62). The squared error loss for each metric is similar
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Table 5.2: Posterior estimates and 95% credible intervals for mixed response model
parameters.

Parameter Estimate 95 % CI
β1 Elevation 0.39 (0.23, 0.57)
β2 Closed tree canopy 0.17 (0.07, 0.28)
β3 Saline -0.21 (-0.51, 0.07)
β4 Marsh -0.22 (-0.43, -0.03)
β5 Wet meadow -0.26 (-0.42, -0.12)
β6 Fen 0.22 (0.05, 0.42)
3/φ2 Effective Range 0.67 (0.31, 3.08)
ω1 Native plant cover 1.00
ω2 Noxious weed cover 1.21 (0.86, 1.69)
ω3 Aggressive native cover 5.37 (2.28, 10.57)
ω4 Structural diversity 0.38 (0.25, 0.54)
ω5 Floristic quality 1.52 (1.28, 1.83)
σ2

1 Native plant cover 1.00
σ2

2 Noxious weed cover 1.36 (0.89, 2.18)
σ2

3 Aggressive native cover 11.83 (4.41, 33.67)
σ2

4 Structural diversity 0.61 (0.46, 0.81)
σ2

5 Floristic quality 0.18 (0.13, 0.24)
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Table 5.3: Discrete-only model: For each metric, estimates and 95% credible intervals of
multiple correlation, estimates of the percent contribution, and rank in evaluating wetland

condition.

Metric Parameter Est. 95 % CI % Contrib. 95 % CI Rank Index
Native plant cover RZ1|H 0.80 (0.68, 0.88) 0.23 (0.20, 0.26) 3 20%
Noxious weed cover RZ2|H 0.84 (0.70, 0.92) 0.24 (0.21, 0.28) 2 0 or 20%
Aggressive native cover RZ3|H 0.58 (0.23, 0.83) 0.17 (0.08, 0.22) 4 0 or 20%
Structural diversity RZ4|H 0.28 (0.09, 0.49) 0.08 (0.03, 0.13) 5 20%
Floristic quality RZ5|H 0.96 (0.92, 0.98) 0.28 (0.25, 0.32) 1 40%

between the discrete-only model and the mixed response model (see Table A.5 in Appendix

A.4).

The remaining results presented here are for the discrete-only model because it is of

interest to the ecologists. The multiple correlation statistics (61) suggest that metric 5,

floristic quality assessment, is most closely correlated with wetland condition (Table 5.3)

and should be ranked most important in evaluating wetland condition. The assessments of

native plant cover, noxious weed cover, and aggressive native cover are slightly less correlated

with wetland condition. The structural diversity measurement (metric 4) appears to be the

least correlated with wetland condition of the five measurements and therefore is ranked

last. Estimates of percent contribution are also given in Table 5.3 where the values are

calculated based on the estimate of RZj |H divided by the sum of all estimates of RZj |H

for j = 1, . . . , 5. The percent contribution estimates can be used as weights for each of

the metrics in estimating the underlying wetland condition. The last column in Table 5.3

reports the current index weights that were selected by a group of wetland experts (Lemly and

Gillian, 2012). The scientists believe floristic quality assessment to be the most important.

The weight “0 or 20%” assigns 20% weight to the lower of the noxious weed cover and

aggressive native cover metrics. Our estimates improve on the current weighting scheme by

being statistically derived weights for each of the metrics with confidence limits.

We estimate the latent spatial process H of wetland condition within the North Platte

and Rio Grande River Basins by drawing from the posterior distribution p(Hi|y) for i =
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1, . . . , n. Since the values of H hold no intrinsic value, we rank the locations from draws of

the posterior distribution. For each draw t in 1, . . . , T , the posterior value of Hi is ranked

across all i = 1, . . . , n assigning a posterior rank to each location for each draw. We estimate

the latent spatial process of wetland condition by computing the median of the posterior

ranks at each location. A location with a median posterior rank falling in the top 20% of

ranks indicates that the wetland at this particular location is in the top 20% of all wetlands

in the region in terms of biotic condition. Figure 5.3 shows the median of the posterior

ranks across all locations within the North Platte and Rio Grande River Basins. Linear

interpolation is used to provide a relatively smooth surface over the two river basins. Note,

however, that wetlands are not found continuously over the regions. The color scale and

contours of the surface are based on the percentile of the median of the posterior ranks over

all locations. Wetland management efforts should be directed towards areas within the river

basins with low posterior ranks. For example, the wetlands in the eastern region of the Rio

Grande River Basin may be of concern. Conversely, land managers may wish to preserve

wetlands in good condition such as those shown in red in Figure 5.3. Similar plots can be

made for the estimates of uncertainty. We performed a simulation study to evaluate the

model and out-of-sample predictive performance (Appendix A.6). The results indicate that

our method provides accurate parameter estimates, predictions, and predictive coverage for

the simulation scenarios that we considered.

5.6 Discussion

The multilevel multivariate latent Gaussian process model presented in this paper pro-

vides a method for evaluating a continuous latent Gaussian process using mixed ordinal and

continuous multivariate response data. A multivariate latent variable is used as the contin-

uous representation of the multivariate mixed response. A second latent variable depending

on site-specific covariates models the continuous random field that is assumed to be driving

the multivariate response. If we were to estimate the partial-sill parameter of the continuous
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Figure 5.3: Median of the posterior ranks of the latent spatial process encompassing
wetland condition (H) across space from the discrete-only response model.

random field in the future using MCMC, we would utilize the re-parameterization of the

exponential covariogram proposed in Chapter 3.4. The continuous latent random field was

modeled in this work using a Gaussian process. Lindgren et al. (2011) present an approxi-

mation to the Gaussian field using a Gaussian Markov random field. Their approach could

accelerate estimation of the parameters of the spatial covariance function.

Our multilevel multivariate latent variable model is used to evaluate the ecological con-

dition of wetlands or other natural resources. Whereas Liu et al. (2005) gave a general

framework for spatial structural equation modeling, the model presented here for multivari-

ate response data could be easily replicated or modified for other applications. The model is

advantageous as it allowed for comparisons of the condition of wetlands in two river basins

in Colorado across space. Further, in-field measurements, or metrics, were ranked when

evaluating the wetland condition score at each particular location. These rankings allow

assignment of statistically valid weights to the five measurements or metrics. These results

will lead to a decrease in the time and effort needed for future wetland evaluation. They

will also help land managers to design and implement effective protocols for maintaining and

restoring wetland habitats.

While we have described and applied the model to a problem related to wetland condition,

the model holds in much larger context. For example, in human health, doctors apply a panel
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of tests to a subject to evaluate health. In this case, the multivariate response would be the

outcomes of the tests and the covariates would be individual information such as gender and

body mass index (BMI).
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work we proposed a multivariate multilevel latent variable model to evaluate

the condition of wetlands in Colorado. Latent variables were used in the model for three

distinct purposes. First, the multivariate response data we observed were both continuous

and ordinal. Therefore, in assuming the ordinal response data were generated by continuous

latent variables, we were able to combine the two types of data in one model. Second, the

probit linear model (PLM) can be defined using continuous latent variables. In Chapter 2 we

showed that the latent variable approach to the probit model can be efficiently fitted within

the Bayesian framework. This is because the latent variables allow for simple and feasible

simulation from the posterior distribution. Lastly, latent variables can also be used to draw

inference on an unmeasurable variable or quantity. In the multivariate multilevel latent

variable model proposed in Chapter 5, we assumed a latent variable, or common factor,

for the univariate unmeasurable quantity of wetland condition. In the example, wetland

condition summarized the multivariate response at each location. We were able to draw

inference on the latent variable using mixed continuous and discrete multivariate response

data and covariate information at observed locations. Further, we were able to predict the

univariate quantity of wetland condition at unobserved locations.

There were two overarching themes throughout this work for spatial probit models: com-

putational efficiency and parameter identifiability. Whereas latent variable models are an

extremely flexible class of models, they tend to have a high-dimensional parameter space

leading to slow mixing when running Markov chain Monte Carlo (MCMC). Further, mul-

tivariate and multilevel latent variable models can easily suffer from parameter nonidenti-

fiability. The issues of computational efficiency and parameter identifiability are magnified
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when fitting geostatistical spatial models. MCMC is slow for geostatistical spatial models

since they require matrix inversion at each iteration and contain parameters that are weakly

identifiable.

6.1 Computational efficiency: Conclusion and future work

In Chapter 2, we proposed a set of data augmentation (DA) and parameter-expanded

data augmentation (PX-DA) algorithms for the spatial PLMM for binary and ordinal data.

We showed that DA algorithms increase the ease of sampling from the posterior distribu-

tion. PX-DA algorithms increase the rate of convergence of MCMC by increasing variation

between iterations within the chain. Other methods and approximations for more efficient

inference of spatial Bayesian models have been introduced in the literature. Integrated

nested Laplacian approximations use both Laplacian and Gaussian approximations for fit-

ting latent Gaussian models (Rue et al., 2009). Gaussian Markov random fields can be

used to approximate continuous spatial fields (Lindgren et al., 2011). Fixed-rank kriging

(Cressie and Johannesson, 2008), predictive processes (Banerjee et al., 2008), and covariance

tapering (Furrer et al., 2006) are other dimension-reduction techniques that have sped up

computation for geostatistical spatial models. The benefit of PX-DA over some of the other

methods for increased computation efficiency is that it uses MCMC for inference. PX-DA

MCMC algorithms should obtain better approximation because they better estimate uncer-

tainty. The nonidentifiable parameter(s) used in PX-DA algorithms is(are) integrated out

after each iteration of MCMC. Therefore, we obtain samples from the posterior distribution

of interest.

6.1.1 MCMC algorithm using marginalized latent variable

DA and PX-DA algorithms were motivated by the multivariate multilevel latent variable

model proposed in Chapter 5. Our aim was to increase computational efficiency for mul-

tivariate response data fit using a spatially correlated common factor model. When fitting
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the spatial PLMM in a Bayesian framework using a Gibbs sampler, Banerjee et al. (2003,

Chapter 5) recommend that algorithms avoid drawing from the full conditional of the spatial

random effect, W . Instead, they suggest integrating over W and drawing the latent contin-

uous response, Z, from its marginal distribution. This is because the marginal variance of

Z, which is equal to ΣW + I, has better mixing properties than the variance of W , ΣW .

The model proposed in Chapter 5 follows the framework of a common factor model where

the response is multivariate. Therefore, the marginal distribution of the latent continuous

response, Z, has dimension nJ × 1, where n is the number of observed locations and J

is the number of response variables. The covariance matrix of Z is dense with dimension

nJ ×nJ . Using the suggested marginalization over the latent spatial variable, each iteration

of the MCMC requires inversion of the nJ × nJ matrix. This has high computation cost for

even reasonable values of n and J . By not marginalizing over W in the MCMC algorithm,

matrix inversion is only required for the n × n covariance matrix of W . Therefore, there is

a trade-off between high computation cost of matrix inversion and better mixing properties

of MCMC algorithms that marginalize over the spatial random effect. We would like to

investigate this trade-off and determine a general rule for when to run MCMC using the

marginalized algorithm for the common factor model.

The fact that the marginal variance of Z has better mixing properties than the variance of

W also suggests that the second-stage spatial probit model may out-perform the first-stage

probit spatial model. Recall that the first-stage spatial probit model (36) is a no-nugget

model where all stochasticity in the binary or ordinal response data is modeled as spatial

stochasticity. That is, the variance of Z is ΣW as opposed to ΣW + I. In this case there

is no random effect to marginalize in order to improve mixing. Unfortunately, this does

not automatically imply that the first-stage spatial probit model will be worse in terms of

mixing and convergence than the marginalizable second-stage spatial probit model (39). This

is because the first-stage spatial probit model is likelihood identifiable when τ is fixed (i.e.,

ΣW = τR where τ is the spatial variance and R is a spatial correlation matrix). We showed
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that the second-stage spatial probit model with covariance function containing a partial

sill and range parameter is weakly identifiable. Weak identifiability can cause mixing and

convergence issues when fitting MCMC. This is why we and others (e.g., (Schmidt et al.,

2008)) recommend informative prior distributions for weakly identifiable parameters. We

would like to further compare the first-stage and second-stage spatial models in terms of

their mixing properties when running MCMC. This comparison could include the benefits

of DA and PX-DA algorithms for the first-stage and second-stage spatial probit models

discussed in Chapter 2. Berrett and Calder (2012) developed DA and PX-DA algorithms for

the first stage spatial probit model for binary response data. These algorithms would need

to be extended for ordinal response data.

6.1.2 Parameterizations of spatial covariance functions

In Chapter 3.4 we proposed a re-parameterization of the exponential covariance function.

Recall that the traditional approach is to assign prior distributions to τ and φ where the

exponential covariance function is defined as

Cov(W (si), W (sj)) = τ exp− 1
φ

dij . (63)

The re-parameterization (35) defined both the partial sill and range parameter as functions

of φ. The re-parameterization led to better mixing of the MCMC in the small simulation

study that we conducted by decreasing the autocorrelation in the chain between iterations.

We would like to further investigate the re-parameterization of the covariance function in a

few ways. First, we would like to determine whether the re-parameterized exponential co-

variance function is sensitive to prior distributions. We will run MCMC with different prior

distributions and compare mixing between the original and the proposed parameterization.

We would also like to see if the benefits of the re-parameterization hold for different covari-

ance functions, such as the Matérn covariance function (of which exponential is a special
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case). This would allow for a general recommendation for parameterization of spatial co-

variance functions when fitting spatial PLMMs. Third, our simulation study was limited to

ordinal response data and the spatial PLMM. Therefore, additional simulations will include

using the re-parameterized covariance function to fit spatial models to both continuous and

count response data. Lastly, we will compare our proposed parameterization to the spatial

covariance parameterizations proposed by Christensen et al. (2006) and Diggle and Ribeiro

(2007, Chapter 5.4).

Our comparison would include, but is not limited, to the following three parameterizations

of the priors for the parameters in (63):

1. Christensen et al. (2006) parameterization: priors assigned to θ1 and θ2 where θ1 =

log(τ 1/2) and θ2 = log(τ/φ).

2. Diggle and Ribeiro (2007, Chapter 5.4) parameterization: priors assigned to θ1 and θ2

where θ1 = log(τ/φ) and θ2 = log(φ).

3. Schliep parameterization: Priors assigned to θ1 and θ2 where θ1 = τ/φ and θ2 = φ.

The comparisons will be made in terms of both mixing of the MCMC algorithm and accuracy

of parameter estimates.

6.1.3 Efficient prediction via latent variables

In Chapter 4 we proposed an approximation for predicting ordinal response data at un-

observed locations for the spatial PLMM. The approximation was shown to be efficient and

accurate. In the Bayesian framework, the method resulted in approximate samples from

the posterior predictive distribution of the density function of an unobserved ordinal re-

sponse variable. From these samples we were able to compute estimates of the approximate

posterior predictive distributions, P (E(Y (s0)|Z(s))) and P (Var(Y (s0)|Z(s))), the condi-

tional expectation and variance of the unobserved ordinal response given the continuous
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latent variables. We also obtained samples from the true posterior predictive distributions,

P (E(Y (s0)|y(s))) and P (Var(Y (s0)|y(s))), the conditional expectation and variance of the

unobserved ordinal response given the observed data using (42). We compared the approxi-

mation estimates to the estimates of the true posterior predictive distribution by computing

the mean squared error (MSE) for out of sample prediction. The MSEs were very similar

for the two approaches.

In Chapter A.4 we compared the mixed discrete and continuous model to the discrete-

only model by computing the loss for the two models across metric. The loss function (68)

was complicated by the fact that in the mixed discrete and continuous model there were

both ordinal and continuous response variables and in the discrete-only model there were

only ordinal response variables. We computed the squared-error loss using draws from the

posterior predictive distribution of the latent response variable, Z. This required us to

compute a “true value” using (62) for the latent response variable (Chapter 5.4.3). The loss

for location, si and response variable j was computed using the posterior draws as

(Zj(si)
(m) − Ẑj(si))

2

where Zj(si)(m) is the mth draw of Zj(si) and Ẑj(si) is the “true value” of the continuous

representation of the observed ordinal response, Yj(si). We believe that the approximation

may be a more appropriate approach for comparing models with multivariate response data

of different types when each variable is modeled by a latent Gaussian variable. This is

because we can use the observed data as the true value for all data types when estimating

prediction error as opposed to having to compute a “true value”. Using the approximation,

we could compute the loss as

(E(Yj(si)|Zj(s))(m) − Yj(si))
2
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where E(Yj(si)|Z(s))(m) is the mth draw of the approximate posterior predictive distribution

of the conditional expectation of Yj(si) given the continuous latent variables Zj(s) and Yj(si)

is the true value of the observed ordinal response. Therefore, we would like to investigate

how the approximation performs for other types of variables, not just ordinal response data.

Further, we would like to explore the approximation as a method for model selection for

multivariate response data where the models differ in response variable type.

6.2 Identifiability: Conclusion and future work

In Chapter 3 we discussed identifiability as it applies to frequentist and Bayesian infer-

ence. We investigated identifiability of the common factor model for multivariate ordinal

response data. We applied a mapping approach between fundamental and reduced-form

parameters for checking identifiability in probit linear models. The mapping approach did

not extend to the common factor model with second-stage spatial correlation. Therefore, we

studied parameter identifiability in spatial probit linear mixed models (PLMMs) for binary

and ordinal response data based on asymptotic theory and empirical results of parameter

identifiability in LMMs and GLMMs. We used simulations to compare the signal in the

likelihood functions of PLMMs for the spatial parameters and related our results to the

theoretical results previously developed for spatial GLMMs (Zhang, 2004).

6.2.1 Identifiability via mapping approach

The mapping approach for checking identifiability focuses on the functional relationship

between structural and reduced-form parameters. For PLMs using latent Gaussian variables,

the reduced-form parameters are the means and variance-covariances of the latent variables.

To achieve identifiability, we proposed fixing one of the variance parameters and one of the

factor-loadings of the common factor. We also omitted the intercept term from the mean

of the common factor. Our work only pertained to the common factor model where each

variable of the multivariate response was ordinal. To apply to a more general common factor
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model, we propose extending the mapping approach to other types of response data that

can be fitted using latent Gaussian models. Latent Gaussian models are suitable for many

types of data, many of which may be of interest when drawing inference on an unobservable

common factor. Therefore, universal recommendations for identifiability of latent Gaussian

models with common factors would be valuable to many modelers.

6.2.2 Identifiability of spatial probit models

We investigated identifiability for spatial probit models using theoretical work for spatial

GLMMs and empirical results for spatial LMMs. The theoretical results for GLMMs show

that τ and φ in (63) are not consistently estimable but the ratio τ/φ is consistently estimable

(Zhang, 2004). As future work we would like to prove Zhang’s results for PLMMs. The

empirical results for continuous response data confirm Zhang’s results and show that both τ

and φ are underestimated by maximum likelihood (ML) and restricted maximum likelihood

(REML) (Irvine et al. (2007) and Chapter 3). The log-likelihood surface plots for spatial

PLMMs (Chapter 3.3.2) suggest that the partial sill and range parameter of the exponential

covariance function are weakly identifiable. This is indicated by the modal regions of the

log-likelihood surfaces (Figures 3.5 - 3.14). The modal regions have positive correlation

suggesting that the ratio τ/φ is identifiable for spatial PLMMs. As the spatial signal increases

and the spatial range decreases, we found that the modal region becomes more localized.

We compared the log-likelihood surfaces for binary, ordinal, and continuous response data

and concluded that each data type underestimated both τ and φ.

The strength of the signal of the spatial parameters in the likelihood of PLMMs is similar

to the strength of the spatial parameter signal found in the likelihood of GLMMs and LMMs.

As the spatial variance, τ , increased, the difference in signal of the spatial parameters between

the data types also increased. The amount of signal in the response likelihood is positively

correlated with data richness where richness is defined by the amount of information in the

data. Continuous data contain the most information and are therefore the most rich. The
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log-likelihood surfaces produced by ordinal response data with 5 categories are similar to

those produced by continuous response data (Figures 3.5 - 3.14). This suggests that as the

number of ordinal categories increases, the signal of the spatial parameters will increase to

that of continuous response data.

In Chapter 4 we compared the first-stage and second-stage spatial probit model (PLMM).

Whereas the first-stage spatial probit model is identifiable, the PLMM is a more flexible

model for fitting binary and ordinal response data. We showed that under different limiting

conditions of the parameters of the spatial covariance function, the approximations of the

conditional expectation and variance at an unobserved location are equivalent for the two

models. In general, we recommend fitting the PLMM when modeling spatial binary or

ordinal response data. We only recommend fitting the first-stage spatial model when all

stochasticity in the response data can reasonably be assumed to be spatially correlated. In

this case, fitting the first-stage model alleviates the issues associated with fitting a weakly

identifiable model.

6.2.3 Bayesian learning for spatial probit models

Weak identifiability does not preclude Bayesian learning about parameters from the data.

Xie and Carlin (2006) proposed a method to gauge the amount of potential Bayesian learn-

ing of weakly identifiable parameters focusing on Gaussian response data and conditional

autoregressive (CAR) spatial models. Their methods are not readily applicable to geostatis-

tical and discrete response data because they require prior, posterior, and other conditional

densities of the latent variables to be known in closed form. Many of these densities will

need to be estimated for spatially correlated non-Gaussian response data. We would first

like to extend their ideas to models for other types of data, including ordinal response data.

Non-Gaussian spatially correlated data are common in many fields. For example, in dis-

ease modeling, observed data can be presence/absence of the disease, count of the number

of animals with the disease, or disease prevalence, all of which are non-Gaussian. Since the
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richness of the response data varies by type, understanding the potential of Bayesian learning

for a given model and data set would be extremely useful.

Geostatistical models are a popular class of spatial models that allow for prediction at

unobserved locations. We would also like to extend the estimation of potential Bayesian

learning to geostatistical spatial models. If we could discern when a weakly identifiable

parameter has very little Bayesian learning potential, it would suggest that the parameter

should be fixed and not estimated with MCMC. This would resolve convergence issues of

MCMC that result from weakly identifiable parameters. It would also help in assigning

informative priors. Priors that are not informative can cause the Markov chain for the weakly

identifiable parameters to drift to extreme values impeding parameter estimation. Overly

informative priors, however, limit Bayesian learning. Therefore, a better understanding of

the potential of Bayesian learning would enhance inference and prediction.

6.3 Conclusion

This dissertation advanced both computational efficiency and identifiability in fitting

models to spatially correlated ordinal response data. The PX-DA algorithms provided faster

convergence of spatial PLMMs and can be adapted easily for models for multivariate response

data. We presented a clear differentiation between first-stage and second-stage spatial probit

models. We showed that weak identifiability exists in spatial PLMMs and is similar to that

in LMMs and GLMMs. We also provided general recommendations for identifiability in

common factor models with multivariate mixed response data. Lastly, the multivariate

multilevel latent variable model was applied to mixed continuous and ordinal measurements

of the biotic condition of wetlands in Colorado. The results are valuable to ecologists for

management planning and restoration for wetlands.
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APPENDIX

A.1 Description of data used in non-spatial probit models

We apply the non-spatial probit model to ordinal response data with 5 categories in

Sections 2.3 and 2.4.2. The response variable is a measure of biotic integrity of wetlands in

Colorado (Lemly and Gillian, 2012). Each observation also contains covariate information.

We include two covariates, elevation and closed-tree canopy, that are known to be correlated

with biotic integrity of wetlands. We refer to the covariates as X1 and X2, respectively.

Table A.1 gives the counts of observations in each of the 5 categories of the ordinal response.

Figure A.1 indicates that both covariates are positively correlated with the ordinal response.

Table A.1: Observed ordinal response values.

1 2 3 4 5 Total
Observed counts 25 47 65 26 69 232

    














    

















Figure A.1: Boxplots of covariates by ordinal response data showing a positive correlation
between both X1 and X2 and response, y.
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Figure A.2: Boxplots of covariate 1 and 2 by observed binary response. They indicate a
positive correlation between both covariates and the binary response, y.

Table A.2: Observed binary response values.

0 1 Total
Observed counts 137 95 232

The same data are used in the binary response examples where the response variable

takes on one of two values. We further bin the ordinal response such that y = 0 when the

ordinal value is in {1, 2, 3} and y = 1 when the ordinal value is in {4, 5}. The counts of

the observed data and boxplots for each covariate in the binary response case are shown in

Table A.2 and Figure A.2, respectively.
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Table A.3: Posterior medians and 95% credible intervals for β and λ using the PDA
algorithm (A.5) and both PX-PDA algorithms (A.6 and 9) for ordinal data with five

categories.

Algorithms
Parameter PDA (A.5) RV-PX-PDA (A.6) RT-PX-PDA (A.9)
β0 2.01 (1.76, 2.26) 2.00 (1.73, 2.28) 2.01 (1.77, 2.26)
β1 0.90 (0.69, 1.11) 0.89 (0.69, 1.11) 0.90 (0.69, 1.11)
β2 0.71 (0.49, 0.94) 0.71 (0.49, 0.94) 0.71 (0.49, 0.94)
λ2 1.00 (0.81, 1.20) 0.99 (0.79, 1.21) 1.00 (0.81, 1.20)
λ3 2.22 (1.96, 2.49) 2.21 (1.95, 2.48) 2.22 (1.97, 2.48)
λ4 2.87 (2.57, 3.18) 2.86 (2.57, 3.17) 2.87 (2.58, 3.17)

A.2 Posterior inference

A.2.1 Posterior derivations for σ2 in RV-PX-PDA

The conditional posterior distribution for σ2 is

p(σ2|y, Z̃, λ) ∝ p(σ2)

∫
p(Z̃|β̃, σ2)p(β̃|σ2)dβ̃

= p(σ2)

∫
1

(2π)n/2
|σ2I|−1/2 exp

[
−

1

2
(Z̃ − X ′β̃)′(σ2I)−1(Z̃ − X ′β̃)

]

×
1

(2π)p/2
|σ2I|−1/2 exp

[
−

1

2
β̃

′
(σ2Σβ)

−1β̃

]
dβ̃

= p(σ2)
1

(2π)n/2
|σ2I|−1/2 exp

[
−

1

2
Z̃

′
(σ2I)−1Z̃

] ∫
1

(2π)p/2
|σ2I|−1/2

× exp

[
−

1

2

(
β̃
(
X ′(σ2I)−1X + (σ2Σβ)

−1
)
β̃ − 2β̃

′
X ′(σ2I)−1Z̃

)]
dβ̃

= p(σ2)
1

(2π)n/2
|σ2I|−1/2

× exp

[
−

1

2

(
Z̃

′
(σ2I)−1Z̃ − (σ2)Z̃

′
X

(
X ′X + Σ−1

β

)−1
X ′Z̃

)]

= p(σ2)
1

(2π)n/2
|σ2I|−1/2 exp

[
−

1

2σ2

(
Z̃

′
Z̃ − Z̃

′
X

(
X ′X + Σ−1

β

)−1
X ′Z̃

)]

(64)
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Therefore, since the conjugate prior distribution for σ2 as p(σ2) ∼ Inv. Gamma(αs, βs),

p(σ2|y, Z̃, λ) ∝ (σ2)−
n
2 −αs−1 exp

[
−

1

σ2

(
βs +

1

2

(
Z̃

′
Z̃ − Z̃

′
X

(
X ′X + Σ−1

β

)−1
X ′Z̃

))]
.

At iteration t within the MCMC, (σ2)t is drawn from

p(σ2|y, Z̃
t
, λt) ∼ Inv. Gamma

(
αs +

n

2
, βs +

1

2

(
(Z̃

t
)′Z̃

t
− Z̃

t
X(X ′X + Σ−1

β )−1X ′Z̃
t
))

.

In the spatial PLMM, similar derivations are required to obtain the conditional posterior

distribution of σ2. First note that the posteriors can be simplified to

p(σ2|y, Z̃, τ,φ) ∝ p(σ2|y, Z̃)

and

p(σ2|y, Z̃, τ,φ, λ) ∝ p(σ2|y, Z̃, λ).

Second, the resulting posterior is the same for both binary and ordinal data. Therefore, the

posterior for the PX-DA algorithms is written as

p(σ2|y, Z̃
t
) ∝ p(σ2|y, Z̃

t
, λt)

∼ Inv. Gamma

(
αs +

n

2
, βs +

1

2

(
(Z̃

t
)′P t(Z̃

t
− X(Σ−1

β + X ′P tX)−1X ′P tZ̃
t
))

where P t = I − (I + (τ tRt)−1)−1.

For the PX2-DA algorithms (e.g., Algorithm A.12), we must compute both the posterior

p(σ2|y, Z̃, W̃ ) where β̃ is integrated out and p(σ2|y, Z̃, β̃) where W̃ is integrated out. Again,

note that
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p(σ2|y, Z̃, W̃ ) = p(σ2|y, Z̃, W̃ , λ)

and

p(σ2|y, Z̃, β̃) = p(σ2|y, Z̃, β̃, λ).

The first posterior is

p(σ2|y, Z̃
t
, W̃

t−1
) ∼ Inv. Gamma(αs + n,

βs +
1

2

(
(W̃

t−1
)′(τ t−1Rt−1)−1W̃

t−1
+ (Z̃

t
− W̃

t−1
)′P t−1(Z̃

t
− W̃

t−1
)
)

where P t = I − X(X ′X + Σ−1
β )−1X ′.

The second posterior is

p(σ2|y, Z̃
t
, β̃

t
) ∼ Inv. Gamma(αs +

n

2
+

m

2
,

βs +
1

2

(
(β̃

t
)′Σ−1

β β̃
t
+ (Z̃

t
− Xβ̃

t
)′P t−1(Z̃

t
− Xβ̃

t
)
)

where P t = I − (I + (τ tRt)−1)−1 and m is the number of covariates in the model.

A.2.2 Posterior derivations for λ in PX-DA for binary response data

The conditional posterior distribution for λ is
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p(λ|y, Z) =
p(y, Z,λ)

p(y, Z)

=

∫
p(y, Z, β,λ)dβ

p(y, Z)

=

∫
p(Z|y, β,λ)p(y, β,λ)dβ

p(y, Z)

∝
∫

p(Z|y, β,λ)p(y|β,λ)p(β,λ)dβ

∝
∫

p(Z|y, β,λ)p(y|β,λ)p(β)p(λ)dβ.

(65)

where the last line holds because β and λ are assumed independent a priori. In the binary

response setting, we defined the sets C0 and C1 such that C0 = {i : yi = 0} and C1 = {i :

yi = 1} for i ∈ 1, . . . , n (Section 2.4.1). Assigning a normal prior distribution to λ such that

p(λ) ∼ N(0, L), we can write the posterior distribution in (65) as
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p(λ|y, Z) ∝ p(λ)

∫ ∏

i∈C0

[
exp

[
−1

2(Zi − λ− X iβ)′(Zi − λ− X iβ)
]

Φ(−X iβ)
I[Zi≤λ]

]

×
∏

i∈C1

[
exp

[
−1

2(Zi − λ− X iβ)′(Zi − λ− X iβ)
]

1 − Φ(−X iβ)
I[Zi>λ]

]

×
n∏

i=1

[
Φ(−X iβ)1−yi(1 − Φ(−X iβ))yi

]
exp

[
−

1

2
β′Σ−1

β β

]
dβ

∝ p(λ)

∫
exp

[
−

1

2
(Z − 1λ− Xβ)′(Z − 1λ− Xβ)

]

× exp

[
−

1

2
β′Σ−1

β β

]
dβ

∏

i∈C0

I[Zi≤λ]

∏

i∈C1

I[Zi>λ]

∝ p(λ)

∫
exp

[
−

1

2
(β′X ′Xβ − 2β′X ′(Z − 1λ) + (Z − 1λ)′(Z − 1λ)

+β′Σ−1
β β

)]
dβ ×

∏

i∈C0

I[Zi≤λ]

∏

i∈C1

I[Zi>λ]

∝ p(λ) exp

[
−

1

2
((Z − 1λ)′(Z − 1λ)

−(X ′(Z − 1λ))′(X ′X + Σ−1
β )−1X(Z − 1λ)

)]
×
∏

i∈C0

I[Zi≤λ]

∏

i∈C1

I[Zi>λ]

∝ exp

[
−

1

2

(
λ′(L−1 + 1′1 − 1′X(X ′X + Σ−1

β )−1X ′1)λ

−2λ′(1′Z − 1′X(X ′X + Σ−1
β )−1X ′Z)

)]
×
∏

i∈C0

I[Zi≤λ]

∏

i∈C1

I[Zi>λ]

(66)

The resulting distribution is truncated-normal and can be written as

p(λ|y, Z) ∼ TN(µλ, τλ, max{Zi : i ∈ A0}, min{Zi : i ∈ C1}), where

µλ = (L−1 + n − 1′X(X ′X + Σ−1
β )−1X ′1)−1(1′Z − 1′X(X ′X + Σ−1

β )−1X ′Z) and

τλ = (L−1 + n − 1′X(X ′X + Σ−1
β )−1X ′1)−1.

(67)
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In the ordinal response setting, we defined the sets Ak such that Ak = {i : yi = k} for

k ∈ 1, . . . , K. To be consistent with the notation in Algorithm 9, we draw α1 from the

conditional distribution p(α1|y, Z, α). That is,

p(α1|y, Z, α) ∼ TN(µα, τα, max{Zi : i ∈ C1}, min{Zi : i ∈ C2}),

where µα and τα are equal to µλ and τλ in (67).

A.3 Observed Data

The frequency of the observed ordinal response values for each metric over all n = 232

locations is summarized in Table A.4. Figures A.3 and A.4 show univariate summaries

between the each ordinal response and the covariates.

Table A.4: Observed response data by metric

Ordinal response
Metric 1 2 3 4 5
Native plant cover 9 16 60 69 75
Noxious weed cover 1 6 10 50 165
Aggressive native cover 1 4 4 3 220
Structural diversity 5 15 82 108 22
Floristic quality 24 47 65 26 69

A.4 Squared error loss

The discrete-only model and the mixed response model are compared by computing the

median squared error loss using the posterior predictions of the latent response Z. The

“true" value of Z for the ordinal metrics is estimated using (62). To compare squared error

loss across models and metrics, we scale each loss value by the variance of its “true" value of

Z. The standardized loss for each location i and metric j is computed using the posterior
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Figure A.3: Boxplots of elevation (y-axis) for each ordinal response (x-axis) for each metric.

    























    























    























    























    























Figure A.4: Boxplots of closed tree canopy (y-axis) for each ordinal response (x-axis) for
each metric.
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draws as
(Z(m)

ij − Ẑij)2

σ̂2
Ẑj

(68)

where Z(m)
ij is the mth draw of Zij and Ẑij is the true value of the continuous representation

of the observed ordinal response, Yij. For a continuous response metric, σ̂2
Ẑj

is the variance

of the response vector Y j since Ẑj is observed. For an ordinal response metric, σ̂2
Ẑj

is the

variance of Ẑj, which is based on the MCMC draws. The resulting loss for each metric is

similar between the discrete-only model and the mixed response model (Table A.5).

Table A.5: Median squared error loss comparison between the two models.

Discrete-Only Model Mixed Response Model
Metric Loss Estimate Loss Estimate
Native plant cover 0.73 0.75
Noxious weed cover 0.74 0.83
Aggressive native cover 1.70 1.04
Structural diversity 0.96 0.93
Floristic quality 0.58 0.37

A.5 Multiple correlation

Canonical correlation analysis is a method used to measure the linear relationship between

two sets of variables (Rencher, 2002, Chapter 11). It is an extension of multiple correlation,

which is the correlation between y and a set of x’s. Canonical correlation is often used to

evaluate the relationship between a set of response variables y = {y1, . . . , yp} and a set of

predictor variables x = {x1, . . . , xq}, each of which is measured on the same set of sampling
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units. It is useful to first partition the covariance matrix of the vectors y and x as

S =




Syy Syx

Sxy Sxx





where Syy is the p × p sample covariance matrix of y, Syx is the p × q sample covariance

matrix between y and x, and Sxx is the q × q sample covariance matrix of x. A measure

of association between between y and x is R2
M . This value is analogous to R2 in linear

regression. It can be written as

R2
M = |S−1

yy SyxS
−1
xx Sxy| =

m∏

i=1

r2
i

where m = min(p, q) and r2
1, . . . , r

2
m are the eigenvalues of S−1

yy SyxS
−1
xx Sxy. The eigenvalues

provide meaningful measures of association between y and x. The largest eigenvalue is the

best overall measure of association in that it represents the maximum squared correlation

between a linear combination of the y′s and a linear combination of the x′s.

The square roots of the eigenvalues are called canonical correlations. The canonical

correlations can also be obtained by computing the eigenvalues of the correlation matrix.

We can partition the correlation matrix as

R =




Ryy Ryx

Rxy Rxx



 (69)

where Ryy is the p × p sample correlation matrix of y, Ryx is the p × q sample correlation

matrix between the y and x, and Rxx is the q × q sample correlation matrix of x. The

canonical correlations can also be computed from R in (69) since the eigenvalues from R

and the matrix S−1
yy SyxS

−1
xx Sxy are equal.

While it is useful to look at the overall association between y and x, we would also like to

evaluate the correlation between each yj and x separately. The multiple correlation, Ryj |x,

191



of yj and x is computed as the square root of

R2
yj |x = SyjxS

−1
xx Sxyj

S−1
yjyj

where Syjx is the jth row of Syx, Sxyj
is the jth column of Sxy, and Syjyj

is the jth element of

the diagonal of Syy. By comparing these multiple correlation values, we can determine which

of the response variables is most correlated with the set of predictor variables. Similarly, we

can compute the individual correlation of each xk and y as the square root of

R2
xk|y = SxkyS

−1
yy Syxk

S−1
xkxk

where Sxyk is the kth row of Sxy, Syxk
is the kth column of Syx, and Sxkxk

is the kth element

of the diagonal of Skk.

A.5.1 Multiple correlation of wetland health

We estimate the relationship between the latent continuous response, Z = {Z1, . . . , ZJ},

and the latent spatial process, H , in our model by estimating multiple correlation. Using the

notation given above, p = J and q = 1. Due to the deterministic relationship between Z and

Y , we assume that the relationship we are estimating will capture that of the relationship

between H and the multivariate response Y . We partition the covariance matrix of the

matrix Z and vector H according to (60).

The multiple correlation statistic is computed for each metric using the posterior simu-

lations described in Section 5.3.4. The posterior median sample covariances for the discrete-

only response model are
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S =




SZZ SZH

SHZ SHH



 =





2.72 2.38 4.33 0.37 2.76 1.73

2.38 4.72 5.93 0.50 3.82 2.41

4.33 5.93 32.18 0.91 6.88 4.26

0.37 0.50 0.91 0.99 0.57 0.36

2.76 3.82 6.88 0.57 4.81 2.77

1.73 2.41 4.26 0.36 2.77 1.74





To measure the overall relationship between Z and H , we compute R2
M = 0.9507. The

resulting canonical correlation is r1 = 0.975. This indicates that there is a strong positive

relationship between the multivariate response and the latent wetland condition variable. For

j ∈ 1, . . . , J , we compute the correlation between the posterior draws of Zj and H using

(61). Larger values of RZj |H (i.e., closer to 1) suggest that metric j is highly correlated with

or explained by the underlying latent variable H . The posterior median sample correlations

are

R =




RZZ RZH

RHZ RHH



 =





1.00 0.67 0.46 0.23 0.77 0.80

0.67 1.00 0.49 0.24 0.81 0.84

0.46 0.49 1.00 0.16 0.56 0.58

0.23 0.24 0.16 1.00 0.27 0.28

0.77 0.81 0.56 0.27 1.00 0.96

0.80 0.84 0.58 0.28 0.96 1.00





The multiple correlation estimates, 95% credible intervals, estimates of percent contribution,

and rank in evaluating wetland condition for the discrete-only model are given in Table 5.3.

We can compute the same posterior median sample covariances, sample correlations, and

the estimates and credible intervals of the multiple correlation values for the mixed response

model. The posterior median sample covariances are
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S =




SZZ SZH

SHZ SHH



 =





1.59 0.72 3.11 0.22 0.91 0.59

0.72 2.30 3.88 0.28 1.12 0.72

3.11 3.88 30.31 1.15 4.90 3.14

0.22 0.28 1.15 0.70 0.35 0.23

0.91 1.12 4.90 0.35 1.62 0.93

0.59 0.72 3.14 0.23 0.93 0.60





and the posterior median sample correlations are

R =




RZZ RZH

RHZ RHH



 =





1.00 0.38 0.46 0.22 0.58 0.61

0.38 1.00 0.47 0.22 0.59 0.63

0.46 0.47 1.00 0.26 0.72 0.76

0.22 0.22 0.26 1.00 0.33 0.36

0.58 0.59 0.72 0.33 1.00 0.95

0.61 0.63 0.76 0.35 0.95 1.00





The multiple correlation estimates for the mixed response model are given in Table A.6.

The results appear to be similar to those of the discrete-only response model given in Table

5.3. The differences in the rankings of the metrics, specifically metrics 1, 2, and 3 is the

result of the continuous scale representation of floristic quality assessment being discretized

differently for different wetland types. Whereas continuous variables tend to contain more

information than their discretized counterpart, the discretization contained information rel-

ative to wetland health and led to changes in the correlation within the metric response

variables.

A.5.2 Ratio of Fixed Effects

Another way to quantify the relationship between Y and H is by computing the ratio

of ωj to θj for each of the metrics j = 1, . . . J (see equation (57)). Since the parameter θj is
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Table A.6: Mixed response model: Estimates and 95% credible intervals of multiple
correlation for each metric as well as the values of percent contribution and rank for each

metric in evaluating wetland condition.

Metric Parameter Est. 95 % CI % Contrib. 95 % CI Rank Index
Native plant cover RZ1|H 0.61 (0.45, 0.76) 0.19 (0.15, 0.21) 4 20%
Noxious weed cover RZ2|H 0.63 (0.42, 0.79) 0.19 (0.15, 0.22) 3 0 or 20%
Aggressive native cover RZ3|H 0.77 (0.49, 0.93) 0.23 (0.17, 0.27) 2 0 or 20%
Structural diversity RZ4|H 0.36 (0.18, 0.56) 0.11 (0.06, 0.15) 5 20%
Floristic quality RZ5|H 0.95 (0.89, 0.97) 0.29 (0.25, 0.34) 1 40%

Table A.7: Estimates of the ratio ω/θ from the discrete-only model as well as %
contribution of the metric and ranking.

Metric Parameter Estimate % Contrib. Rank Index
Native plant cover ω1/θ1 0.40 0.20 2 20%
Noxious weed cover ω2/θ2 0.32 0.17 3 0 or 20%
Aggressive native cover ω3/θ3 0.23 0.12 4 0 or 20%
Structural diversity ω4/θ4 0.10 0.05 5 20%
Floristic quality ω5/θ5 0.88 0.46 1 40%

a fixed effect for metric j, it represents the intercept in the relationship between Z and H .

The parameter ωj is also a fixed effect and represents the factor loading of the spatial random

field H . Therefore, the ratio of ωj/θj can be thought of as the ratio of the factor loading of

the spatial random effect and the fixed effect for metric j. Larger values of ωj relative to θj

would indicate that H is more closely related to or represented by metric j. For instance,

when ωj is large, slight differences between H̃i and H̃l may result in Ỹij *= Ỹlj. When ωj is

small, however, even significant differences in the latent health may not change the predicted

ordinal response. The metrics can be ranked by comparing ωj/θj for j ∈ 1, . . . , J (Table

A.7). The results indicate that H is predominantly represented by floristic quality. Native

plant cover and noxious weed cover are also correlated with H . The comparison of the ratio

of fixed effects can be made only between metrics having response variables of the same type

and scale.
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Figure A.5: Three hundred simulated locations within 3 × 3 grid. Two hundred locations
used to fit the model and the remaining one hundred were used for model evaluation.

A.6 Simulation Study

To evaluate the performance of our methods we simulated data based on the multivariate

multilevel latent variable model with three discrete response metrics. Three data sets were

simulated as outlined below and the model was estimated for each data set. The outcomes

of the three simulation were similar and therefore we report the results of only one. We

define our spatial domain of interest as a 3 × 3 spatial grid and simulated 300 locations

uniformly over the region. We use the first n = 200 locations to fit the proposed model and

the remaining m = 100 locations for prediction (Figure A.5).

We randomly simulated two multivariate random variables over the spatial domain to

use as covariates X1 and X2 in the mean of H where H is drawn according to (58). Values

for the coefficient vector β = (β1, β2) were fixed at 0.22 and 0.95, respectively. The true

parameter of the covariance of H was fixed at φ1 = 1 and φ2 = 15.76. Note that φ1 is the

sill parameter of the covariance and φ2 is the range parameter of the exponential correlation

function. The effective range of the exponential correlation function is 3/φ2 = 0.19. In
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this simulation, the spatial correlation is only large at locations at close proximity. The

true latent spatial random variable H was a random drawn from a multivariate normal

distribution with mean Xβ and covariance ΣH(φ) = φ1 exp−dφ2 where d is the n×n matrix

of distances between sample locations. The true fixed effects θ and ω were randomly drawn

from independent uniform and normal distributions, respectively where θ = {1.73, 3.80, 3.62}

and ω = {1.00, 1.37,−0.77}. The true values of θ1, θ2, and θ3 were all chosen to be positive

to ensure that the observed ordinal response values spanned each of the K = 5 categories.

For j = 1, 2, 3, the true continuous latent random vector Zj was drawn from its multivariate

normal distribution with mean θj1+ωjH and variance σ2
j In. The length-6 vector of threshold

values λ was fixed such that λ0 = −∞, λ1 = 0, and λ5 = ∞. The other thresholds were

drawn from a multivariate normal distribution on the transformed scale and then were back-

transformed. This was done to preserve the constraint that λk ≤ λk+1. The resulting true

threshold was set to

λ = {−∞, 0, 1.81, 3.26, 4.71,∞}.

The observed ordinal response data Y j for metrics j = 1, . . . , 3 are in the set {1, . . . , 5}

based on the values of Zj and the true threshold vector λ.

We ran the MCMC algorithm for 100,000 iterations and discarded the first 10,000 as burn-

in. The true parameter values as well as the posterior median and 95% credible intervals are

given in Table A.8. The results show that all but two parameters, ω2 and σ2
2 are captured

their respective credible interval.

Using the posterior draws of the model parameters, we make predictions using the

Bayesian posterior prediction distributions p(Ỹ |y) and p(H̃|y). We evaluated the predictive

ability of the model by comparing the mode of the posterior prediction distribution to the

true metric value at each site for each metric (Table A.9). Of the 300 predicted metric scores,

the truth was captured 57% of the time, whereas the predicted metric value was within 1 of

the truth 93% of the time.
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Table A.8: Simulated parameter values and posterior median estimates and 95% credible
interval from model output.

Parameter True Value Estimate 95 % CI
β1 0.22 0.21 (0.04, 0.39)
β2 0.95 1.15 (0.90, 1.41)
3/φ2 0.19 0.31 (0.17, 0.66)
ω1 1.00 1.00
ω2 1.37 0.73 (0.47, 1.12)
ω3 -0.77 -0.80 (-1.01, -0.61)
θ1 1.73 1.44 (0.73, 2.13)
θ2 3.80 4.16 (3.30, 4.93)
θ3 3.62 4.01 (3.28, 4.83)
σ2

1 1.00 1.00
σ2

2 2.75 0.96 (0.48, 1.97)
σ2

3 1.41 1.52 (1.03, 2.18)

Table A.9: The posterior modes and true discrete metric response values at the m = 100
new locations for all metrics. In bold are the number of correct predictions of metric

response values.

True Value
Posterior Median 1 2 3 4 5

1 1 1 0 0 0
2 10 15 8 3 0
3 5 29 36 25 3
4 0 2 4 15 10
5 1 2 5 22 103

Capturing the latent random field H is of primary focus in this work. We make predic-

tions of H̃ at m = 100 new locations by taking draws from the Bayesian posterior prediction

distribution p(H̃|y). Ninety-five percent posterior prediction intervals of H̃ at m = 100 new

locations indicate that only one interval failed to capture the true value (Figure A.6). This

indicates that our method achieves appropriate predictive coverage.
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Figure A.6: Ninety-five percent posterior prediction intervals for latent spatial field H at
m = 100 new locations. The true value is captured in 99 of the intervals.
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