15 research outputs found

    No sympatric speciation here: multiple data sources show that the ant Myrmica microrubra is not a separate species but an alternate reproductive morph of Myrmica rubra

    No full text
    No aspect of speciation is as controversial as the view that new species can evolve sympatrically, among populations in close physical contact. Social parasitism has been suggested to yield necessary disruptive selection for sympatric speciation. Recently, mitochondrial DNA phylogeography has shown that the ant Myrmica microrubra is closely related to its host, Myrmica rubra, leading to the suggestion that sympatric speciation has occurred. We investigated the relationships between the two ant forms using mitochondrial and nuclear DNA sequences, microsatellite genotyping and morphometrics. Molecular phylogenetic and population structure analyses showed that M. microrubra does not evolve separately to its host but rather shares a gene pool with it. Probability analysis showed that mitochondrial DNA data previously adduced in favour of sympatric speciation do not in fact do so. Morphometrically, M. microrubra is most readily interpreted as a miniature queen form of M. rubra, not a separate species. Myrmica microrubra is not an example of speciation. The large (typical M. rubra) and small (M. microrubra) queen forms are alternative reproductive strategies of the same species. Myrmica microrubraSeifert 1993 is consequently synonymized here with M. rubra Linnaeus, 1758

    Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure

    No full text
    BACKGROUND AND PURPOSE: Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. METHODS: We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. RESULTS: There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P \u3c .0001). This finding was consistent in sensitivity analysis that compared right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. CONCLUSION: Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations

    3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions

    Get PDF
    Abstract Background One of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique. Methods Thirty-four healthy subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e.  0.75). In addition, all ICCs of patients were equal to or higher than that of healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of ≥50 years were equal to or higher than that of the age group of < 50 years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of ≥50 years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size. Conclusions Whole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression

    Assessing Cerebrovascular Hemodynamics Using Transcranial Doppler in Patients with Mechanical Circulatory Support Devices

    No full text
    BACKGROUND AND PURPOSE Mechanical circulatory support (MCS) devices are commonly used in heart failure patients. These devices carry risk for presumably embolic and additionally hemorrhagic stroke. Alterations in blood flow play a key role in stroke pathophysiology, and we aimed to learn more about hemodynamic compromise. In this study, we used transcranial Doppler (TCD) ultrasound to define hemodynamics of commonly used nonpulsatile MCS devices, as well as pulsatile devices, with special attention to the total artificial heart (TAH). METHODS From 2/2013 through 12/2016, we prospectively enrolled patients with MCS who underwent TCD imaging. We analyzed TCD parameters, including peak systolic velocity, end-diastolic velocity, pulsatility indices (PIs), and number of high-intensity transient signals. Waveform morphologies were compared between various MCS devices. RESULTS We performed 132 TCD studies in 86 MCS patients. Waveforms in patients supported by venoarterial-extracorporeal membrane oxygenation demonstrated continuous flow without clear systolic peaks with an average (+/- SD) PI of .43 (+/-.2). PIs were low in patients with continuous-flow left ventricular assist devices with a mean PI of .32 (+/-.13). Impella patients had morphologically distinct pulsatile waveforms and a higher mean PI of .65 (+/-.24). In intra-arterial balloon pump patients, mean PI was 1.01 (+/-.16) and diastolic upstrokes were pronounced. In TAH patients, mean middle cerebral artery velocity of 79.69 (+/- 32.33) cm/seconds and PI of .74 (+/-.14) approached normal values. CONCLUSION TCD can detect characteristic waveforms in patients supported by various MCS devices. These device-specific TCD patterns are recognizable and reproducible.12 month embargo; published online: 10 February 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Specificity and transmission mosaic of ant nest-wall fungi

    No full text
    Mutualism, whereby species interact to their mutual benefit, is extraordinary in a competitive world. To recognize general patterns of origin and maintenance from the plethora of mutualistic associations proves a persisting challenge. The simplest situation is believed to be that of a single mutualist specific to a single host, vertically transmitted from one host generation to the next. We characterized ascomycete fungal associates cultured for nest architecture by the ant subgenera Dendrolasius and Chthonolasius. The ants probably manage their fungal mutualists by protecting them against fungal competitors. The ant subgenera display different ant-to-fungus specificity patterns, one-to-two and many-to-one, and we infer vertical transmission, in the latter case overlaid by horizontal transmission. Possible evolutionary trajectories include a reversal from fungiculture by other Lasius subgenera and inheritance of fungi through life cycle interactions of the ant subgenera. The mosaic indicates how specificity patterns can be shaped by an interplay between host life-cycles and transmission adaptations
    corecore