486 research outputs found
Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein
Processing of endogenously synthesized proteins generates short peptides that are presented by MHC class I molecules to CD8 T lymphocytes. Here it is documented that not only the sequence of the presented peptide but also the residues by which it is flanked in the protein determine the efficiency of processing and presentation. This became evident when a viral sequence of proven antigenicity was inserted at different positions into an unrelated carrier protein. Not different peptides, but different amounts of the antigenic insert itself were retrieved by isolation of naturally processed peptides from cells expressing the different chimeric proteins. Low yield of antigenic peptide from an unfavorable integration site could be overcome by flanking the insert with oligo-alanine to space it from disruptive neighboring sequences. Notably, the degree of protection against lethal virus disease related directly to the amount of naturally processed antigenic peptide
Excited by a quantum field: Does shape matter?
The instantaneous transition rate of an arbitrarily accelerated Unruh-DeWitt
particle detector on four-dimensional Minkowski space is ill defined without
regularisation. We show that Schlicht's regularisation as the zero-size limit
of a Lorentz-function spatial profile yields a manifestly well-defined
transition rate with physically reasonable asymptotic properties. In the
special case of stationary trajectories, including uniform acceleration, we
recover the results that have been previously obtained by a regularisation that
relies on the stationarity. Finally, we discuss evidence for the conjecture
that the zero-size limit of the transition rate is independent of the detector
profile.Comment: 7 pages, uses jpconf. Talk given at NEB XII (Nafplio, Greece, 29 June
- 2 July 2006
How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile
We analyse within first-order perturbation theory the instantaneous
transition rate of an accelerated Unruh-DeWitt particle detector whose coupling
to a massless scalar field on four-dimensional Minkowski space is regularised
by a spatial profile. For the Lorentzian profile introduced by Schlicht, the
zero size limit is computed explicitly and expressed as a manifestly finite
integral formula that no longer involves regulators or limits. The same
transition rate is obtained for an arbitrary profile of compact support under a
modified definition of spatial smearing. Consequences for the asymptotic
behaviour of the transition rate are discussed. A number of stationary and
nonstationary trajectories are analysed, recovering in particular the Planckian
spectrum for uniform acceleration.Comment: 30 pages, 1 figure. v3: Added references and minor clarification
Selection Wages and Discrimination
Applicants for any given job are more or less suited to fill it, and the firm will select the best among them. Increasing the wage offer attracts more applicants and makes it possible to raise the hiring standard and improve the productivity of the staff. Wages that optimize on the trade-off between the wage level and the productivity of the workforce are known as selection wages. As men react more strongly to wage differentials than females, the trade-off is more pronounced for men and a profit-maximizing firm will offer a higher wage for men than for women in equilibrium
Accelerated detectors in Dirac vacuum: the effects of horizon fluctuations
We consider an Unruh-DeWitt detector interacting with a massless Dirac field.
Assuming that the detector is moving along an hyperbolic trajectory, we modeled
the effects of fluctuations in the event horizon using a Dirac equation with
random coefficients. First, we develop the perturbation theory for the
fermionic field in a random media. Further we evaluate corrections due to the
randomness in the response function associated to different model detectors.Comment: 19 pages, 1 figur
Relativistic Quantum Information in Detectors-Field Interactions
We review Unruh-DeWitt detectors and other models of detector-field
interaction in a relativistic quantum field theory setting as a tool for
extracting detector-detector, field-field and detector-field correlation
functions of interest in quantum information science, from entanglement
dynamics to quantum teleportation. We in particular highlight the contrast
between the results obtained from linear perturbation theory which can be
justified provided switching effects are properly accounted for, and the
nonperturbative effects from available analytic expressions which incorporate
the backreaction effects of the quantum field on the detector behaviour.Comment: 21 pages, 3 figures. Prepared for the special focus issue on RQ
- …