84 research outputs found

    Stabilization of the alleged bishomoromatic bicyclo[3.2.1]octa-2,6-dienyl anion by counterion interactions and by hyperconjugation

    Get PDF
    Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution

    Design of Carborane Molecular Architectures via Electronic Structure Computations

    Get PDF
    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of polycarborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photoenergy processes

    Analysis of Dentists’ Participation in Continuing Professional Development Courses from 2001-2006

    Get PDF
    Currently in Western Australia (WA) there is no requirement for dentists to participate in continuing professional development (CPD). The aim of this study was to determine the participation pattern of dentists in WA in CPD activities. Data was collated regarding registrants for courses conducted by the University Continuing Dental Education Committee. Information concerned number of courses attended by each dentist, location of work and year of graduation from university. Details of subject, length and type of courses conducted were also gathered. Most courses were half to one day in duration with many subjects covered. Between 10.1-24.4% of dentists registered in WA attended at least one course each year. Low numbers of recently graduated and older dentists attended courses. Similar percentages of metropolitan and rural dentists attended courses. Participation in CPD activities of dentists in WA was low. Half day or evening courses appear to be favoured by dentists

    Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Get PDF
    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners

    Extension of a data-driven gating technique to 3D, whole body PET studies

    No full text
    Respiratory gating can be used to separate a PET acquisition into a series of near motion-free bins. This is typically done using additional gating hardware; however, software-based methods can derive the respiratory signal from the acquired data itself. The aim of this work was to extend a data-driven respiratory gating method to acquire gated, 3D, whole body PET images of clinical patients. The existing method, previously demonstrated with 2D, single bed-position data, uses a spectral analysis to find regions in raw PET data which are subject to respiratory motion. The change in counts over time within these regions is then used to estimate the respiratory signal of the patient. In this work, the gating method was adapted to only accept lines of response from a reduced set of axial angles, and the respiratory frequency derived from the lung bed position was used to help identify the respiratory frequency in all other bed positions. As the respiratory signal does not identify the direction of motion, a registration-based technique was developed to align the direction for all bed positions. Data from 11 clinical FDG PET patients were acquired, and an optical respiratory monitor was used to provide a hardware-based signal for comparison. All data were gated using both the data-driven and hardware methods, and reconstructed. The centre of mass of manually defined regions on gated images was calculated, and the overall displacement was defined as the change in the centre of mass between the first and last gates. The mean displacement was 10.3 mm for the data-driven gated images and 9.1 mm for the hardware gated images. No significant difference was found between the two gating methods when comparing the displacement values. The adapted data-driven gating method was demonstrated to successfully produce respiratory gated, 3D, whole body, clinical PET acquisitions.</jats:p

    Cyclopentadienyl and related (CH)5+ cations

    No full text

    Nonamethylcyclopentyl Cation Rearrangement Mysteries Solved

    No full text
    The <i>C</i><sub>1</sub> nonamethylcyclopentyl cation minimum undergoes complete methyl scrambling in SbF<sub>5</sub> with a 7 kcal/mol barrier. This corresponds to the rate-limiting conformational interconversion of enantiomeric hyperconjomers via a <i>C</i><sub>s</sub> transition structure (above right). A remarkable, more rapid, second process only exchanges methyls within sets of four and five (blue and red, see above), as has been observed experimentally at low temperatures. The computed ∼2 kcal/mol barrier involves a <i>C</i><sub><i>s</i></sub> [1s,2s] sigmatropic methyl shift transition structure (above left)

    Comparing approaches to correct for respiratory motion in NH3 PET-CT cardiac perfusion imaging

    Get PDF
    AIM: Respiratory motion affects cardiac PET-computed tomography (CT) imaging by reducing attenuation correction (AC) accuracy and by introducing blur. The aim of this study was to compare three approaches for reducing motion-induced AC errors and evaluate the inclusion of respiratory motion correction. MATERIALS AND METHODS: AC with a helical CT was compared with averaged cine and gated cine CT, as well as with a pseudo-gated CT, which was produced by applying PET-derived motion fields to the helical CT. Data-driven gating was used to produce respiratory-gated PET and CT images, and 60 NH(3) PET scans were attenuation corrected with each of the CTs. Respiratory motion correction was applied to the gated and pseudo-gated attenuation-corrected PET images. RESULTS: Anterior and lateral wall intensity measured in attenuation-corrected PET images generally increased when PET-CT alignment improved and decreased when alignment degraded. On average, all methods improved PET-CT liver and cardiac alignment, and increased anterior wall intensity by more than 10% in 36, 33 and 25 cases for the averaged, gated and pseudo-gated CTAC PET images, respectively. However, cases were found where alignment worsened and severe artefacts resulted. This occurred in more cases and to a greater extent for the averaged and gated CT, where the anterior wall intensity reduced by more than 10% in 21 and 24 cases, respectively, compared with six cases for the pseudo-gated CT. Application of respiratory motion correction increased the average anterior and inferior wall intensity, but only 13% of cases increased by more than 10%. CONCLUSION: All methods improved average respiratory-induced AC errors; however, some severe artefacts were produced. The pseudo-gated CT was found to be the most robust method

    The remarkably stabilized trilithiocyclopropenium ion, C<SUB>3</SUB>Li<SUB>3</SUB><SUP>+</SUP>, and its relatives

    No full text
    The structures and energies of lithiated cyclopropenyl cations and their acyclic isomers (C3H3-nLin+, n = 0-3) have been calculated employing ab initio MO (HF/6-31G&#8727;) and density functional theory (DFT, Becke3LYP/6-311+G&#8727;) methods. The cyclic isomers (4, 6, 10, and 14) are always favored, but when lithium is substituted sequentially along the C3H3+, C3H2Li+, C3HLi2+, and C3Li3+ series, the acyclic forms (5, 7, 11, 16) become progressively less competitive energetically. A triply bridged c-C3(&#956;-Li)3+ geometry, 14, was preferred over the classical form 3 by 8.7 kcal/mol. A single lithium substituent results in a very large (67 kcal/mol) stabilization of the cyclopropenyl cation. The favorable effects of further lithium substitution are attenuated but are still large: 48.2 and 40.5 kcal/mol for the second and third replacements, respectively. Comparison with polyamino-substituted cyclopropenyl cations suggest c-C3Li3+ (3 and 14) to be a good candidate for the thermodynamically most stable carbenium ion. The stabilization of the cyclopropenyl cation afforded by the excellent p-donor substituent NH2 (42.8, 33.4, and 23.7 kcal/mol for the first, second and third NH2 groups, respectively) is uniformly lower than the corresponding values for Li substitution. The total stabilization due to two NH2 groups, and a Li (128.2 kcal/mol) is higher than that due to three NH2 groups (99.8 kcal/mol). All the lithiated cyclopropyl radicals are computed to have exceptionally low adiabatic ionization energies (3.2-4.3 eV) and even lower than the ionization energies of the alkali metal atoms Li-Cs (4.0-5.6 eV). The ionization energy of C3Li3&#8727; is the lowest (3.18 eV), followed by C3(&#956;-Li)3&#8727; (3.35 eV). The 1H, 6Li, and 13C NMR data of cyclopropenyl cation and its lithium derivatives indicate the carbon, lithium, and hydrogen chemical shifts to increase with increasing lithium substitution on the ring. The computed 1H chemical shifts and the magnetic susceptibility anisotropies as well as the nucleus independent chemical shifts (NICS, based on absolute magnetic shieldings) reveal enhanced aromaticity upon increasing lithium substitution. The B3LYP/6-311+G&#8727;-computed vibrational frequencies agree closely with experiment for cyclopropenyl cation and, hence, can be used for the structural characterization of the lithiated and amino species
    corecore