8,035 research outputs found

    Hyperbolic manifolds with convex boundary

    Full text link
    Let (M,∂M)(M, \partial M) be a compact 3-manifold with boundary, which admits a convex co-compact hyperbolic metric. We consider the hyperbolic metrics on MM such that the boundary is smooth and strictly convex. We show that the induced metrics on the boundary are exactly the metrics with curvature K>−1K>-1, and that the third fundamental forms of \dr M are exactly the metrics with curvature K2πK2\pi. Each is obtained exactly once. Other related results describe existence and uniqueness properties for other boundary conditions, when the metric which is achieved on \dr M is a linear combination of the first, second and third fundamental forms.Comment: Check the updated version(s) on http://picard.ups-tlse.fr/~schlenker/ Version 2: an error corrected. Version 3: simpler main statement, small corrections, more details on one technical statement. Version 5: one error correcte

    Non-rigidity of spherical inversive distance circle packings

    Get PDF
    We give a counterexample of Bowers-Stephenson's conjecture in the spherical case: spherical inversive distance circle packings are not determined by their inversive distances.Comment: 6 pages, one pictur

    Hyperideal circle patterns

    Full text link
    A ``hyperideal circle pattern'' in S2S^2 is a finite family of oriented circles, similar to the ``usual'' circle patterns but such that the closed disks bounded by the circles do not cover the whole sphere. Hyperideal circle patterns are directly related to hyperideal hyperbolic polyhedra, and also to circle packings. To each hyperideal circle pattern, one can associate an incidence graph and a set of intersection angles. We characterize the possible incidence graphs and intersection angles of hyperideal circle patterns in the sphere, the torus, and in higher genus surfaces. It is a consequence of a more general result, describing the hyperideal circle patterns in the boundaries of geometrically finite hyperbolic 3-manifolds (for the corresponding \C P^1-structures). This more general statement is obtained as a consequence of a theorem of Otal \cite{otal,bonahon-otal} on the pleating laminations of the convex cores of geometrically finite hyperbolic manifolds.Comment: 11 pages, 2 figures. Updated versions will be posted on http://picard.ups-tlse.fr/~schlenker Revised version: some corrections, better proof, added reference
    • …
    corecore