8,035 research outputs found
Hyperbolic manifolds with convex boundary
Let be a compact 3-manifold with boundary, which admits a
convex co-compact hyperbolic metric. We consider the hyperbolic metrics on
such that the boundary is smooth and strictly convex. We show that the induced
metrics on the boundary are exactly the metrics with curvature , and that
the third fundamental forms of \dr M are exactly the metrics with curvature
. Each is
obtained exactly once.
Other related results describe existence and uniqueness properties for other
boundary conditions, when the metric which is achieved on \dr M is a linear
combination of the first, second and third fundamental forms.Comment: Check the updated version(s) on http://picard.ups-tlse.fr/~schlenker/
Version 2: an error corrected. Version 3: simpler main statement, small
corrections, more details on one technical statement. Version 5: one error
correcte
Non-rigidity of spherical inversive distance circle packings
We give a counterexample of Bowers-Stephenson's conjecture in the spherical
case: spherical inversive distance circle packings are not determined by their
inversive distances.Comment: 6 pages, one pictur
Hyperideal circle patterns
A ``hyperideal circle pattern'' in is a finite family of oriented
circles, similar to the ``usual'' circle patterns but such that the closed
disks bounded by the circles do not cover the whole sphere. Hyperideal circle
patterns are directly related to hyperideal hyperbolic polyhedra, and also to
circle packings.
To each hyperideal circle pattern, one can associate an incidence graph and a
set of intersection angles. We characterize the possible incidence graphs and
intersection angles of hyperideal circle patterns in the sphere, the torus, and
in higher genus surfaces. It is a consequence of a more general result,
describing the hyperideal circle patterns in the boundaries of geometrically
finite hyperbolic 3-manifolds (for the corresponding \C P^1-structures). This
more general statement is obtained as a consequence of a theorem of Otal
\cite{otal,bonahon-otal} on the pleating laminations of the convex cores of
geometrically finite hyperbolic manifolds.Comment: 11 pages, 2 figures. Updated versions will be posted on
http://picard.ups-tlse.fr/~schlenker Revised version: some corrections,
better proof, added reference
- …