127 research outputs found

    Global Challenges for Cancer Imaging

    Get PDF
    published_or_final_versio

    An integrated MR/PET system: prospective applications

    Get PDF
    Radiology is strongly depending on medical imaging technology and consequently directing technological progress. A novel technology can only be established, however, if improved diagnostic accuracy influence on therapeutic management and/or overall reduced cost can be evidenced. It has been demonstrated recently that Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can technologically be integrated into one single hybrid system. Some scientific arguments on the benefits are obvious, e.g., that simultaneous imaging of morphological and functional information will improve tissue characterization. However, crossfire of questions still remains: What unmet radiological needs are addressed by the novel system? What level of hardware integration is reasonable, or would software-based image co-registration be sufficient? Will MR/PET achieve higher diagnostic accuracy compared to separate imaging? What is the added value compared to other hybrid imaging modalities like PET/CT? And finally, is the system economically reasonable and has the potential to reduce overall costs for therapy planning and monitoring? This article tries to highlight some perspectives of applying an integrated MR/PET system for simultaneous morphologic and functional imaging

    METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer.

    Get PDF
    Context Comparative reviews of whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography/computed tomography (CT; with different radiotracers) have shown that metastasis detection in advanced cancers is more accurate than with currently used CT and bone scans. However, the ability of WB-MRI and positron emission tomography/CT to assess therapeutic benefits has not been comprehensively evaluated. There is also considerable variability in the availability and quality of WB-MRI, which is an impediment to clinical development. Expert recommendations for standardising WB-MRI scans are needed, in order to assess its performance in advanced prostate cancer (APC) clinical trials.Objective To design recommendations that promote standardisation and diminish variations in the acquisition, interpretation, and reporting of WB-MRI scans for use in APC.Evidence acquisition An international expert panel of oncologic imagers and oncologists with clinical and research interests in APC management assessed biomarker requirements for clinical care and clinical trials. Key requirements for a workable WB-MRI protocol, achievable quality standards, and interpretation criteria were identified and synthesised in a white paper.Evidence synthesis The METastasis Reporting and Data System for Prostate Cancer guidelines were formulated for use in all oncologic manifestations of APC.Conclusions Uniformity in imaging data acquisition, quality, and interpretation of WB-MRI are essential for assessing the test performance of WB-MRI. The METastasis Reporting and Data System for Prostate Cancer standard requires validation in clinical trials of treatment approaches in APC.Patient summary METastasis Reporting and Data System for Prostate Cancer represents the consensus recommendations on the performance, quality standards, and reporting of whole-body magnetic resonance imaging, for use in all oncologic manifestations of advanced prostate cancer. These new criteria require validation in clinical trials of established and new treatment approaches in advanced prostate cancer

    Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence

    Get PDF
    To assess the capability of perfusion MRI to differentiate between necrosis and tumor recurrence in patients showing radiological progression of cerebral metastases treated with stereotactic radiosurgery (SRS). From 2004 to 2006 dynamic susceptibility-weighted contrast-enhanced perfusion MRI scans were performed on patients with cerebral metastasis showing radiological progression after SRS during follow-up. Several perfusion MRI characteristics were examined: a subjective visual score of the relative cerebral blood volume (rCBV) map and quantitative rCBV measurements of the contrast-enhanced areas of maximal perfusion. For a total of 34 lesions in 31 patients a perfusion MRI was performed. Diagnoses were based on histology, definite radiological decrease or a combination of radiological and clinical follow-up. The diagnosis of tumor recurrence was obtained in 20 of 34 lesions, and tumor necrosis in 14 of 34. Regression analyses for all measures proved statistically significant (χ2 = 11.6–21.6, P < 0.001–0.0001). Visual inspection of the rCBV map yielded a sensitivity and specificity of 70.0 respectively 92.9%. The optimal cutoff point for maximal tumor rCBV relative to white matter was 2.00 (improving the sensibility to 85.0%) and 1.85 relative to grey matter (GM), improving the specificity to 100%, with a corresponding sensitivity of 70.0%. Perfusion MRI seems to be a useful tool in the differentiation of necrosis and tumor recurrence after SRS. For the patients displaying a rCBV-GM greater than 1.85, the diagnosis of necrosis was excluded. Salvage treatment can be initiated for these patients in an attempt to prolong survival

    A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy

    Get PDF
    SR4554 is a fluorine-containing 2-nitroimidazole, designed as a hypoxia marker detectable with 19F magnetic resonance spectroscopy (MRS). In an initial phase I study of SR4554, nausea/vomiting was found to be dose-limiting, and 1400 mg m−2 was established as MTD. Preliminary MRS studies demonstrated some evidence of 19F retention in tumour. In this study we investigated higher doses of SR4554 and intratumoral localisation of the 19F MRS signal. Patients had tumours 3 cm in diameter and 4 cm deep. Measurements were performed using 1H/19F surface coils and localised 19F MRS acquisition. SR4554 was administered at 1400 mg m−2, with subsequent increase to 2600 mg m−2 using prophylactic metoclopramide. Spectra were obtained immediately post infusion (MRS no. 1), at 16 h (MRS no. 2) and 20 h (MRS no. 3), based on the SR4554 half-life of 3.5 h determined from a previous study. 19Fluorine retention index (%) was defined as (MRS no. 2/MRS no. 1)*100. A total of 26 patients enrolled at: 1400 (n=16), 1800 (n=1), 2200 (n=1) and 2600 mg m−2 (n=8). SR4554 was well tolerated and toxicities were all grade 1; mean plasma elimination half-life was 3.7±0.9 h. SR4554 signal was seen on both unlocalised and localised MRS no. 1 in all patients. Localised 19F signals were detected at MRS no. 2 in 5 out of 9 patients and 4 out of 5 patients at MRS no. 3. The mean retention index in tumour was 13.6 (range 0.6-43.7) compared with 4.1 (range 0.6-7.3) for plasma samples taken at the same times (P=0.001) suggesting 19F retention in tumour and, therefore, the presence of hypoxia. We have demonstrated the feasibility of using 19F MRS with SR4554 as a potential method of detecting hypoxia. Certain patients showed evidence of 19F retention in tumour, supporting further development of this technique for detection of tumour hypoxia
    corecore