210 research outputs found
Synaptic transmission parallels neuromodulation in a central food-intake circuit
NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level.SFB 645 and 704, DFG Cluster of Excellence ImmunoSensation, DFG grant PA 787, HHMI Janeli
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
http://digilander.libero.it/solciclo
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Severe male infertility after failed ICSI treatment-a phenomenological study of men's experiences
<p>Abstract</p> <p>Background</p> <p>Male-factor infertility underlies approximately 30% of infertility in couples seeking treatment; of which 10% is due to azoospermia. The development of assisted reproductive technology (ART), enabling the use of epididymal or testicular sperm for fertilization of the partner's oocytes, has made biological fatherhood possible for men with obstructive azoospermia. There is limited knowledge of men's experience of their own infertility. The aim of this study was to describe men's experiences of obstructive azoospermia infertility.</p> <p>Methods</p> <p>Eight men with obstructive azoospermia, who had terminated Swedish public health system ART treatment two years previously without subsequent childbirth, were interviewed using a descriptive phenomenological method.</p> <p>Results</p> <p>The essence of the phenomenon is expressed with a metaphor: climbing a mountain step by step with the aim of reaching the top, i.e. having a child and thus a family with a child. Four constituents are included (1) inadequacy followed by a feeling of redress (2) marginalisation, (3) chivalry (4) extension of life and starting a family as driving forces.</p> <p>Conclusions</p> <p>Knowledge of men's experiences of their own infertility is important as a supporting measure to increase the quality of care of infertile couples. By adopting this facet of gender perspective in fertility treatment guidelines, care can hopefully be optimized.</p
Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction
<p>Abstract</p> <p>Background</p> <p>Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead <it>advanced </it>ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG.</p> <p>Methods</p> <p>Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals.</p> <p>Results</p> <p>Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value.</p> <p>Conclusion</p> <p>Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD.</p
Impairment of Vowel Articulation as a Possible Marker of Disease Progression in Parkinson's Disease
Purpose: The aim of the current study was to survey if vowel articulation in speakers with Parkinsonβs disease (PD) shows specific changes in the course of the disease. Method: 67 patients with PD (42 male) and 40 healthy speakers (20 male) were tested and retested after an average time interval of 34 months. Participants had to read a given text as source for subsequent calculation of the triangular vowel space area (tVSA) and vowel articulation index (VAI). Measurement of tVSA and VAI were based upon analysis of the first and second formant of the vowels /a/, /i/and /u / extracted from defined words within the text. Results: At first visit, VAI values were reduced in male and female PD patients as compared to the control group, and showed a further decrease at the second visit. Only in female Parkinsonian speakers, VAI was correlated to overall speech impairment based upon perceptual impression. VAI and tVSA were correlated to gait impairment, but no correlations were seen between VAI and global motor impairment or overall disease duration. tVSA showed a similar reduction in the PD as compared to the control group and was also found to further decline between first and second examination in female, but not in male speakers with PD. Conclusions: Measurement of VAI seems to be superior to tVSA in the description of impaired vowel articulation and its further decline in the course of the disease in PD. Since impairment of vowel articulation was found to be independent fro
Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus
Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer
Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence
Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops
- β¦