405 research outputs found

    A Damn Hard Thing to Do

    Get PDF
    Back in the mid-eighties, I offered a first year, second semester un-elective called American Legal Theory and American Legal Education. It scrunched together two history courses I had taught irregularly before. I liked the way the two topics fit together and still do, but with so many recalcitrant law students enrolled in it, the course was an unmitigated disaster. As is always the case with such attempts at offering perspective, amidst the shambles I had acquired at least a few devoted students. At the end of the last class one of them came up to the front to ask a somewhat rhetorical question. He said, Do I read you correctly? You have been arguing that if we want to change legal education, we have to change the categories of legal thought? I nodded in agreement, to which he replied, You know that\u27s gonna be damn hard? I remember this comment not just because of the student\u27s insight but also because it pretty much marked the end to my active participation in attempts at significantly reforming the curriculum at the University at Buffalo Law School. An attempt to comprehensively reform the first-year curriculum had recently broken down when one crucial participant offered a my way or the highway alternative that none of us could understand. Such a result was a fitting tombstone to a career that had started back in 1967 when I was a third-year law student. Gerhard Casper, then new to the University of Chicago Law School faculty, gathered a group of my classmates together to discuss revision of that school\u27s curriculum. As a member of this group, I suggested that the first year be given over to tutorial work designed to bring all students up to master\u27s degree level of competence in a range of relevant social sciences

    The Linear Theory Power Spectrum from the Lyman-alpha Forest in the Sloan Digital Sky Survey

    Full text link
    We analyze the SDSS Ly-alpha forest P_F(k,z) measurement to determine the linear theory power spectrum. Our analysis is based on fully hydrodynamic simulations, extended using hydro-PM simulations. We account for the effect of absorbers with damping wings, which leads to an increase in the slope of the linear power spectrum. We break the degeneracy between the mean level of absorption and the linear power spectrum without significant use of external constraints. We infer linear theory power spectrum amplitude Delta^2_L(k_p=0.009s/km,z_p=3.0)=0.452_{-0.057-0.116}^{+0.069+0.141} and slope n_eff=-2.321_{-0.047-0.102}^{+0.055+0.131} (possible systematic errors are included through nuisance parameters in the fit - a factor >~5 smaller errors would be obtained on both parameters if we ignored modeling uncertainties). The errors are correlated and not perfectly Gaussian, so we provide a chi^2 table to accurately describe the results. The result corresponds to sigma_8=0.85, n=0.94, for a LCDM model with Omega_m=0.3, Omega_b=0.04, and h=0.7, but is most useful in a combined fit with the CMB. The inferred curvature of the linear power spectrum and the evolution of its amplitude and slope with redshift are consistent with expectations for LCDM models, with the evolution of the slope, in particular, being tightly constrained. We use this information to constrain systematic contamination, e.g., fluctuations in the UV background. This paper should serve as a starting point for more work to refine the analysis, including technical improvements such as increasing the size and number of the hydrodynamic simulations, and improvements in the treatment of the various forms of feedback from galaxies and quasars.Comment: Improved presentation, including fit results for (z). Simple code to produce LyaF chi^2 given linear power spectrum available at: http://www.cita.utoronto.ca/~pmcdonal/code.htm

    The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey

    Full text link
    We measure the power spectrum, P_F(k,z), of the transmitted flux in the Ly-alpha forest using 3035 high redshift quasar spectra from the Sloan Digital Sky Survey. This sample is almost two orders of magnitude larger than any previously available data set, yielding statistical errors of ~0.6% and ~0.005 on, respectively, the overall amplitude and logarithmic slope of P_F(k,z). This unprecedented statistical power requires a correspondingly careful analysis of the data and of possible systematic contaminations in it. For this purpose we reanalyze the raw spectra to make use of information not preserved by the standard pipeline. We investigate the details of the noise in the data, resolution of the spectrograph, sky subtraction, quasar continuum, and metal absorption. We find that background sources such as metals contribute significantly to the total power and have to be subtracted properly. We also find clear evidence for SiIII correlations with the Ly-alpha forest and suggest a simple model to account for this contribution to the power. While it is likely that our newly developed analysis technique does not eliminate all systematic errors in the P_F(k,z) measurement below the level of the statistical errors, our tests indicate that any residual systematics in the analysis are unlikely to affect the inference of cosmological parameters from P_F(k,z). These results should provide an essential ingredient for all future attempts to constrain modeling of structure formation, cosmological parameters, and theories for the origin of primordial fluctuations.Comment: 92 pages, 45 of them figures, submitted to ApJ, data available at http://feynman.princeton.edu/~pmcdonal/LyaF/sdss.htm

    Chandra Observations of Type Ia Supernovae: Upper Limits to the X-ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke

    Full text link
    We set sensitive upper limits to the X-ray emission of four Type Ia supernovae (SNe Ia) using the Chandra X-ray Observatory. SN 2002bo, a normal, although reddened, nearby SN Ia, was observed 9.3 days after explosion. For an absorbed, high temperature bremsstrahlung model the flux limits are 3.2E-16 ergs/cm^2/s (0.5-2 keV band) and 4.1E-15 ergs/cm^2/s (2-10 keV band). Using conservative model assumptions and a 10 km/s wind speed, we derive a mass loss rate of \dot{M} ~ 2E-5 M_\odot/yr, which is comparable to limits set by the non-detection of Halpha lines from other SNe Ia. Two other objects, SN 2002ic and SN 2005gj, observed 260 and 80 days after explosion, respectively, are the only SNe Ia showing evidence for circumstellar interaction. The SN 2002ic X-ray flux upper limits are ~4 times below predictions of the interaction model currently favored to explain the bright optical emission. To resolve this discrepancy we invoke the mixing of cool dense ejecta fragments into the forward shock region, which produces increased X-ray absorption. A modest amount of mixing allows us to accommodate the Chandra upper limit. SN 2005gj is less well studied at this time. Assuming the same circumstellar environment as for SN 2002i, the X-ray flux upper limits for SN 2005gj are ~4 times below the predictions, suggesting that mixing of cool ejecta into the forward shock has also occurred here. Our reanalysis of Swift and Chandra data on SN 2005ke does not confirm a previously reported X-ray detection. The host galaxies NGC 3190 (SN 2002bo) and NGC 1371 (SN 2005ke) each harbor a low luminosity (L_X ~ 3-4E40 ergs/s) active nucleus in addition to wide-spread diffuse soft X-ray emission.Comment: 16 pages, to appear in ApJ (20 Nov 2007

    SDSSJ103913.70+533029.7: A Super Star Cluster in the Outskirts of a Galaxy Merger

    Full text link
    We describe the serendipitous discovery in the spectroscopic data of the Sloan Digital Sky Survey of a star-like object, SDSSJ103913.70+533029.7, at a heliocentric radial velocity of +1012 km/s. Its proximity in position and velocity to the spiral galaxy NGC 3310 suggests an association with the galaxy. At this distance, SDSSJ103913.70+533029.7 has the luminosity of a super star cluster and a projected distance of 17 kpc from NGC 3310. Its spectroscopic and photometric properties imply a mass of > 10^6 solar masses and an age close to that of the tidal shells seen around NGC 3310, suggesting that it formed in the event which formed the shells.Comment: Accepted by AJ: 4 figures (1 color

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator

    The Milky Way Tomography with SDSS: III. Stellar Kinematics

    Full text link
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ~100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z<1Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap

    Early-type galaxies in the SDSS. I. The sample

    Get PDF
    A sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. This paper describes how the sample was selected, presents examples of images and seeing corrected fits to the observed surface brightness profiles, describes our method for estimating K-corrections, and shows that the SDSS spectra are of sufficiently high quality to measure velocity dispersions accurately. It also provides catalogs of the measured photometric and spectroscopic parameters. In related papers, these data are used to study how early-type galaxy observables, including luminosity, effective radius, surface brightness, color, and velocity dispersion, are correlated with one another.Comment: 63 pages, 21 figures. Accepted by AJ (scheduled for April 2003). This paper is part I of a revised version of astro-ph/0110344. The full version of Tables 2 and 3, i.e. the tables listing the photometric and spectroscopic parameters of ~ 9000 galaxies, are available at http://astrophysics.phys.cmu.edu/~bernardi/SDSS/Etypes/TABLE

    The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey

    Full text link
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and accepted by AJ. Provides background for the instrument responsible for SDSS and BOSS spectra. 4th in a series of survey technical papers released in Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral Classification), and arXiv:1208.0022 (BOSS Overview

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio
    • …
    corecore