8 research outputs found

    Cytochrome c6A: discovery, structure and properties responsible for its low haem redox potential

    No full text
    Cytochrome c6A is a unique dithio-cytochrome of green algae and plants. It has a very similar core structure to that of bacterial and algal cytochromes c6, but is unable to fulfil the same function of transferring electrons from cytochrome f to Photosystem I. A key feature of cytochrome c6A is that its haem midpoint potential is more than 200 mV below that of cytochrome c6 (Em≈+340 mV) despite both cytochromes having histidine and methionine residues as axial haem-iron ligands. One salient difference between the haem pockets is that a valine residue in cytochrome c6A replaces a highly conserved glutamine residue in cytochrome c6. This difference has been probed using site-directed mutagenesis, X-ray crystallography and protein film voltammetry studies. It has been found that the stereochemistry of the glutamine residue within the haem pocket has a destabilizing effect and is responsible for tuning the haem's midpoint potential by over 100 mV. This large effect may have contributed to the evolution of a new biological function for cytochrome c6A.</jats:p

    Role of Charges on Cytochrome f

    No full text

    Structure of cytochrome c6A, a novel dithio-cytochrome of Arabidopsis thaliana, and its reactivity with plastocyanin: implications for function

    No full text
    Cytochrome c6A is a unique dithio-cytochrome present in land plants and some green algae. Its sequence and occurrence in the thylakoid lumen suggest that it is derived from cytochrome c6, which functions in photosynthetic electron transfer between the cytochrome b6f complex and photosystem I. Its known properties, however, and a strong indication that the disulfide group is not purely structural, indicate that it has a different, unidentified function. To help in the elucidation of this function the crystal structure of cytochrome c6A from Arabidopsis thaliana has been determined in the two redox states of the heme group, at resolutions of 1.2 A (ferric) and 1.4 A (ferrous). These two structures were virtually identical, leading to the functionally important conclusion that the heme and disulfide groups do not communicate by conformational change. They also show, however, that electron transfer between the reduced disulfide and the heme is feasible. We therefore suggest that the role of cytochrome c6A is to use its disulfide group to oxidize dithiol/disulfide groups of other proteins of the thylakoid lumen, followed by internal electron transfer from the dithiol to the heme, and re-oxidation of the heme by another thylakoid oxidant. Consistent with this model, we found a rapid electron transfer between ferro-cytochrome c6A and plastocyanin, with a second-order rate constant, k2=1.2 x 10(7) M(-1) s(-1)

    Modulation of heme redox potential in the cytochrome c6 family

    No full text
    Cytochrome c6A is a unique dithio-cytochrome of green algae and plants. It has a very similar core structure to that of bacterial and algal cytochromes c6 but is unable to fulfill the same function of transferring electrons from cytochrome f to photosystem I. A key feature is that its heme midpoint potential is more than 200 mV below that of cytochrome c6 despite having His and Met as axial heme-iron ligands. To identify the molecular origins of the difference in potential, the structure of cytochrome c6 from the cyanobacterium Phormidium laminosum has been determined by X-ray crystallography and compared with the known structure of cytochrome c6A. One salient difference of the heme pockets is that a highly conserved Gln (Q51) in cytochrome c6 is replaced by Val (V52) in c6A. Using protein film voltammetry, we found that swapping these residues raised the c6A potential by +109 mV and decreased that of c6 by almost the same extent, -100 mV. X-ray crystallography of the V52Q protein showed that the Gln residue adopts the same configuration relative to the heme as in cytochrome c6 and we propose that this stereochemistry destabilizes the oxidized form of the heme. Consequently, replacement of Gln by Val was probably a key step in the evolution of cytochrome c6A from cytochrome c6, inhibiting reduction by the cytochrome b6f complex and facilitating establishment of a new function
    corecore