7 research outputs found

    The effect of high correlated colour temperature office lighting on employee wellbeing and work performance

    Get PDF
    BACKGROUND: The effects of lighting on the human circadian system are well-established. The recent discovery of 'non-visual' retinal receptors has confirmed an anatomical basis for the non-image forming, biological effects of light and has stimulated interest in the use of light to enhance wellbeing in the corporate setting. METHODS: A prospective controlled intervention study was conducted within a shift-working call centre to investigate the effect of newly developed fluorescent light sources with a high correlated colour temperature (17000 K) upon the wellbeing, functioning and work performance of employees. Five items of the SF-36 questionnaire and a modification of the Columbia Jet Lag scale, were used to evaluate employees on two different floors of the call centre between February and May 2005. Questionnaire completion occurred at baseline and after a three month intervention period, during which time one floor was exposed to new high correlated colour temperature lighting and the other remained exposed to usual office lighting. Two sided t-tests with Bonferroni correction for type I errors were used to compare the characteristics of the two groups at baseline and to evaluate changes in the intervention and control groups over the period of the study. RESULTS: Individuals in the intervention arm of the study showed a significant improvement in self-reported ability to concentrate at study end as compared to those within the control arm (p < 0.05). The mean individual score on a 5 point Likert scale improved by 36.8% in the intervention group, compared with only 1.7% in the control group. The majority of this improvement occurred within the first 7 weeks of the 14 week study. Substantial within group improvements were observed in the intervention group in the areas of fatigue (26.9%), alertness (28.2%), daytime sleepiness (31%) and work performance (19.4%), as assessed by the modified Columbia Scale, and in the areas of vitality (28.4%) and mental health (13.9%), as assessed by the SF-36 over the study period. CONCLUSION: High correlated colour temperature fluorescent lights could provide a useful intervention to improve wellbeing and productivity in the corporate setting, although further work is necessary in quantifying the magnitude of likely benefits

    Low-intensity blue-enriched white light (750 lux) and standard bright light (10 000 lux) are equally effective in treating SAD. A randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT) of SAD with treatment using short-wavelength blue-enriched white light (BLT). Both treatments used the same illuminance (10 000 lux) and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT.</p> <p>Method</p> <p>In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD) were given light treatment (10 000 lux) for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000°K) with the EnergyLight<sup>® </sup>(Philips, Consumer Lifestyle) with a vertical illuminance of 10 000 lux at eye position or BLT (17 000°K) with a vertical illuminance of 750 lux using a prototype of the EnergyLight<sup>® </sup>which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools.</p> <p>Results</p> <p>On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%). On the basis of all assessments no statistically significant differences were found between the two conditions.</p> <p>Conclusion</p> <p>With sample size being small, conclusions can only be preliminary. Both treatment conditions were found to be highly effective. The therapeutic effects of low-intensity blue-enriched light were comparable to those of the standard light treatment. Saturation effects may play a role, even with a light intensity of 750 lux. The therapeutic effects of blue-enriched white light in the treatment of SAD at illuminances as low as 750 lux help bring light treatment for SAD within reach of standard workplace and educational lighting systems.</p

    Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health

    No full text
    A daily rhythm that is not in synchrony with the environmental light-dark cycle (as in jetlag and shift work) is known to affect mood and health through an as yet unresolved neural mechanism. Here, we combine Bayesian probabilistic 'cue-conflict' theory with known physiology of the biological clock of the brain, entailing the insight that, for a functional pacemaker, it is sufficient to have two interacting units (reflecting environmental and internal time-of-day cues), without the need for an extra homuncular directing unit. Unnatural light-dark cycles cause a time-of-day cue-conflict that is reflected by a desynchronization between the ventral (environmental) and dorsal (internal) pacemaking signals of the pacemaker. We argue that this desynchronization, in-and-of-itself, produces health issues that we designate as 'circadian-time sickness', analogous to 'motion sickness'.publisher: Elsevier articletitle: Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health journaltitle: Trends in Neurosciences articlelink: http://dx.doi.org/10.1016/j.tins.2016.09.004 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved.status: publishe

    Screening and separation of charges in microscale devices: complete planar solution of the Poisson-Boltzmann equation

    No full text
    The Poisson-Boltzmann (PB) equation is widely used to calculate the interaction between electric potential and the distribution of charged species. In the case of a symmetrical electrolyte in planar geometry, the Gouy-Chapman (GC) solution is generally presented as the analytical solution of the PB equation. However, we demonstrate here that this GC solution assumes the presence of a bulk region with zero electric field, which is not justified in microdevices. In order to extend the range of validity, we obtain here the complete numerical solution of the planar PB equation, supported with analytical approximations. For low applied voltages, it agrees with the GC solution. Here, the electric double layers fully absorb the applied voltage such that a region appears where the electric field is screened. For higher voltages (of order I V in microdevices), the solution of the PB equation shows a dramatically different behavior, in that the double layers can no longer absorb the complete applied voltage. Instead, a finite field remains throughout the device that leads to complete separation of the charged species. In this higher voltage regime, the double layer characteristics are no longer described by the usual Debye parameter kappa, and the ion concentration at the electrodes is intrinsically bound (even without assuming steric interactions). In addition, we have performed measurements of the electrode polarization current on a nonaqueous model electrolyte inside a microdevice. The experimental results are fully consistent with our calculations, for the complete concentration and voltage range of interest

    Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments

    Get PDF
    Multiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, which is designed to capture the mechanical phenomena at the atomistic, molecular or molecular cluster level, and large scale which is connected to continuous description. For each scale, well-established numerical methods have been developed over the years to handle the relevant phenomena. As a first part of this paper, the most popular numerical methods, used at different scales, as well as the coupling approaches between them are classified, according to their features and applications, so that the place of those used in multiscale modeling can be distinguished. Subsequently, the class of concurrent discrete–continuum coupling approaches, which is well adapted for dynamic studies of complex multiscale problems, is reviewed. Several techniques used in this class are also detailed. Among them, the bridging domain (BD) technique is used to develop a discrete–continuum coupling approach, adapted for dynamic simulations, between the Discrete Element Method and the Constrained Natural Element Method (CNEM). This approach is applied to study the BD coupling parameters in dynamics. Several results giving more light on the setting of these parameters in practice are obtained
    corecore