20 research outputs found

    Practical Issues Concerning Temporary Carbon Credits in the CDM

    Get PDF
    Afforestation and reforestation (AR) projects in the Clean Development Mechanism are able to create emission permits that can be accounted against the industrialized countries' commitments for limiting their greenhouse gas emissions, as agreed under the Kyoto Protocol. The discussion of how to treat credits from temporary carbon stocks is centering on the proposal for expiring emission credits from AR, which in the subsequent commitment period need to be replaced. While the basic methodological question is thus being solved, the practicalities arising from the solution have so far not been considered. The authors make new proposals on accounting modalities, define the tCER value as compared to a permanent CER, and forecast who will be the potential buyers for temporary offsets

    Practical Issues Concerning Temporary Carbon Credits in the CDM

    No full text
    Afforestation and reforestation (AR) projects in the Clean Development Mechanism are able to create emission permits that can be accounted against the industrialized countries' commitments for limiting their greenhouse gas emissions, as agreed under the Kyoto Protocol. The discussion of how to treat credits from temporary carbon stocks is centering on the proposal for expiring emission credits from AR, which in the subsequent commitment period need to be replaced. While the basic methodological question is thus being solved, the practicalities arising from the solution have so far not been considered. The authors make new proposals on accounting modalities, define the tCER value as compared to a permanent CER, and forecast who will be the potential buyers for temporary offsets.Clean Development Mechanism, Forestry, Environmental Economics and Policy, Q23, Q25, Q13,

    Stock changes or fluxes? Resolving terminological confusion in the debate on land-use change and forestry

    No full text
    This article collates definitions of some key terms commonly used in greenhouse gas reporting and accounting for the Land Use, Land-Use Change and Forestry (LULUCF) sector, and highlights areas of ambiguity and divergent interpretations of key concepts. It uses the example of harvested wood products to demonstrate the impact of different interpretations. The objective is to facilitate clear communication amongst negotiators and practitioners in relation to the terms emissions, removals, sources and sinks. Confusion and misunderstandings that have arisen in the past are rooted in diverging interpretations of the terms 'emissions' and 'removals' in the context of land use and wood products. One interpretation sees emissions and removals to be approximated by a change in carbon stocks in a number of selected carbon pools that may include or exclude harvested wood products. Another interpretation views emissions and removals as gross fluxes between the atmosphere and the land/wood products system. The various alternative approaches that have been proposed for reporting for harvested wood products are applicable to one or the other of these interpretations: the stock-change and production approaches, focused on stock changes, are applicable to the first interpretation; whereas the atmospheric flow and simple decay approaches focus on fluxes, as in the second interpretation. Whether emissions/removals are approximated by stock change or from gross fluxes, it is critical that a consistent approach is applied across the whole LULUCF/AFOLU sector. Approaches based on stock change are recommended over those based on fluxes

    A Legal Study of Offset Credit System in Emission Trading Scheme

    No full text

    Land-based carbon storage and the European union emissions trading scheme: the science underlying the policy

    No full text
    Climate change, Carbon market, Land use land-use change and forestry, European Union Emissions Trading Scheme, Environmental and social benefits,

    Key terms used in greenhouse gas reporting and accounting for the land use, land use change and forestry sector

    No full text
    EA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international co-operation and information exchange between national bioenergy RD&amp;D programmes. IEA Bioenergy Task 38 integrates and analyses information on GreenHouse Gases (GHG), bioenergy, and land use; thereby covering all components that constitute a biomass or bioenergy system.This paper has been prepared by IEA Bioenergy Task 38 with the aim of providing an overview of interpretations of key terms related to land use, land-use change and forest, and harvested wood products. It represents a consensus achieved by experts participating in the Task, but does not necessarily represent the views of the countries that participate in the Task.In addition to the main text, the paper provides an alternative interpretation of key definitions in Box 1, which represents the views of the author listed there.As with every specialty area, specific terminology has been developed and utilised in communications relating to greenhouse gas reporting and accounting. Some terms have been adopted from common usage but defined differently from their common meanings outside of this context. In some cases, though the same definitions of key term are used, interpretations differ. We have perceived that some discussions, such as deliberations over reporting of harvested wood products in national GHG inventories, have been complicated by different understandings of terminology. This paper collates definitions of key terms commonly used in relation to greenhouse gas reporting and accounting for the land use, land-use change and forestry (LULUCF) sector2, and highlights areas of ambiguity and divergent interpretations. Misunderstanding and differences over interpretations of key terminology can be a major barrier to effective communication; our intention is to facilitate clear communication between the many players participating in the various processes dealing with estimation and reporting of greenhouse gas emissions and removals.The Paper is scoped to collate existing and accepted definitions that apply to the LULUCF sector, constrained to those used under the UNFCCC and related documents, and discussion of key concepts over which there is currently divergence of interpretation. All definitions are written in bold italics; other text is discussion and interpretation.<br/

    Bioenergy strategies and the global carbon cycle. / Stratégies bioénergétiques et cycle global du carbone

    No full text
    Bioenergy strategies are seen as effective options to reduce net CO₂ emissions to the atmosphere. Carbon emissions from fossil fuel burning can be avoided if biomass is used as an energy carrier instead, because in a bioenergy system CO₂ is taken up by the plants and released to the atmosphere again when biomass is burned for energy. However, a carbon balance of bioenergy also needs to take into account the associated changes of С stored in the biosphere, i.e. in the vegetation, in plant litter and soils. For example, a net reduction of the С content in the biosphere leads to an increase of the atmosphere's С content by the same amount, and vice versa. Bioenergy is often produced along with other goods such as wood products. In such cases the carbon balance has to include the effect of С storage in biomass products and the substitution of other, energy consuming materials like steel or concrete with biomass. GORCAM (Graz -Oak Ridge -Carbon Accounting Model) is a spreadsheet model that has been developed to calculate the carbon balance of land management and biomass utilization strategies in forestry and agriculture. Input parameters describe the management régime (rotation length, harvesting intensity, growth rate...), previous land use, soil and litter carbon dynamics, fate of the harvest (biomass for energy, biomass products with varying lifetimes), fossil fuel substitution and its efficiency (bioenergy instead of fossil energy ; biomass products instead of products from other, more energy intensive materials), fossil fuel requirements for land management and biomass conversion. Model results reveal that the carbon balance of land management and biomass utilization strongly depends on the initial С storage on the site, the growth rate, the efficiency with which the harvest is used, and the time period of consideration. For high growth rates and efficient use of the harvest, the dominant component of the С balance is seen to be fossil fuel substitution. Some strategies result in a significant net reduction of carbon emissions from their very beginning {e.g. short-rotation forestry on previously agricultural land). Harvest of existing forests for biofuels and wood products can lead to a net source or sink at the beginning, depending on the efficiency of harvest use. In the case of a net initial source, the С balance can return to positive values as the forest regrows, the «payback period» being determined by the forest growth rate and other factors mentioned above.Stratégies bioénergétiques et cycle global du carbone Les stratégies bioénergétiques sont perçues comme des options utiles à la réduction des émissions de CO₂ dans l'atmosphère. Les émissions de carbone issues de la combustion de fuels fossiles peuvent être évitées si la biomasse est considérée comme un réservoir d'énergie, puisque dans un système bioénergétique le CO₂ est absorbé par les plantes puis relâché lors de la combustion. Cependant, le bilan carboné bioénergétique doit aussi tenir compte des modifications induites des quantités de carbone stockées dans la végétation, la litière des plantes et les sols. Par exemple, une réduction du contenu net de carbone bioterrestre conduit à une augmentation de la même quantité dans l'atmosphère, et vice versa. La bioénergie est souvent produite en association avec d'autres biens, comme les produits en bois. Dès lors, le bilan carboné doit tenir compte du carbone stocké dans les produits de la biomasse, et des effets de substitution de la biomasse à d'autres matériaux coûteux en énergie comme l'acier ou le béton. GORCAM (Graz -Oak Ridge -Carbon Accounting Model) est un modèle développé sur logiciel tableur qui a pour but de calculer le bilan carboné en fonction de la gestion des terres et des stratégies d'utilisation de la biomasse en sylviculture et en agriculture. Parmi les paramètres d'entrée du modèle, il est tenu compte des caractéristiques du mode de gestion (durées de rotations, intensité des coupes, taux de croissances...), de l'occupation antérieure des terres, de la dynamique du carbone dans le sol et la litière, du devenir des récoltes (bioénergie, durée de vie variée de la biomasse selon son utilisation). Il est également tenu compte de la substitution des combustibles fossiles par la bioénergie, du rendement énergétique de la biomasse, et de la production de biens à partir de la biomasse en remplacement d'autres matériaux plus coûteux en énergie. La consommation de combustible fossile nécessaire à la gestion du milieu et à la conversion de la biomasse est aussi prise en compte. Les résultats du modèle révèlent que le bilan carboné résultant d'une nouvelle gestion des terres et de l'utilisation de la biomasse dépend fortement de la quantité initiale de carbone sur le site, du taux de croissance, de l'efficacité de l'utilisation des récoltes, et de l'échelle de temps considérée. Pour des taux de croissance élevés et une utilisation efficace des récoltes, la principale composante du bilan carboné s'avère être la substitution des combustibles fossiles. Certaines stratégies débouchent sur une diminution significative des émissions nettes de carbone dès leur début (e.g. rotation forestière rapide sur d'anciens terrains agricoles). La coupe de forêts existantes mène au début à un dégagement ou à un stockage de carbone, selon l'efficacité d'utilisation de la récolte. Dans le cas d'une source initiale nette, le bilan carboné peut revenir à nouveau vers des valeurs positives (puits) lors de la repousse de la forêt au terme d'une période fonction du taux de croissance de la forêt et des autres facteurs mentionnés ci-dessus.Schlamadinger Bernhard, Canella Lorenza, Marland Gregg, Spitzer Josef. Bioenergy strategies and the global carbon cycle. / Stratégies bioénergétiques et cycle global du carbone. In: Sciences Géologiques. Bulletin, tome 50, n°1-4, 1997. The global carbon cycle in the terrestrial biosphere, sous la direction de Gérard Dedieu et Jean-Luc Probst. pp. 157-182
    corecore