36 research outputs found

    Over a barrel: A worldwide energy crisis…

    Full text link
    The 3rd Annual Renewable Energy Symposium took place on the UNLV campus August 11 & 12. The event focused on renewable energy production in Nevada, the US Southwest, and renewable research projects nationwide. The event was a great success with over 200 individuals in attendance

    Fragmentation Processes Following Core Excitation in Acetylene and Ethylene by Partial Ion Yield Spectroscopy

    Full text link
    Partial ion yield spectroscopy provides a very detailed picture of fragmentation processes following core excitation in isolated molecules. We exploit this potential in the analysis of decay processes following C1s→π and C1s→Rydberg excitations in ethylene and acetylene. We show that the relative intensity of spectral features related to the excitation to empty molecular orbitals or to Rydberg states is a function of the time variation of the fragmentation process. Namely, we see an intensity increase in the Rydberg states compared to the molecular orbitals as the fragmentation process becomes more extensive, a result attributable to the diffuse nature of the Rydberg virtual orbitals, which makes spectator decay more likely than participator decay. Therefore, the number of dissociative final states that can be reached from Rydberg excitation is higher than for excitation to empty molecular orbitals. In acetylene, we obtain the first direct evidence of the presence of a ơ* excitation embedded in the Rydberg series. The formation of the fragment H2+ in ethylene occurs following a recombination process, while in acetylene it is related to excess vibrational energy stored in the intermediate state. Furthermore, we can use the enhancement in channels corresponding to doubly charged species as an indication for the presence of shape resonances

    Anionic Photofragmentation of CO: A Selective Probe of Core-Level Resonances

    Full text link
    Anion-yield spectroscopy using x rays is shown to be a selective probe of molecular core-level processes, providing unique experimental verification of shape resonances. For CO, partial anion and cation yields are presented for photon energies near the C K edge. The O- yield exhibits features above threshold related only to doubly excited states, in contrast to cation yields which also exhibit pronounced structure due to the well-known σ* shape resonance. Because the shape resonance is completely suppressed for O-, anion spectroscopy thus constitutes a highly selective probe, yielding information unobtainable with absorption or electron spectroscopy

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k
    corecore