28 research outputs found

    Two glaciers and one sedimentary sink: the competing role of the Aare and the Valais glaciers in filling an overdeepened trough inferred from provenance analysis

    Get PDF
    The extent and distribution of glaciers on the Swiss Plateau during the Last Glacial Maximum (LGM) can be determined from the geological record. However, similar reconstructions for the glaciations that preceded the LGM are far more difficult to be made due to the destruction of suitable sedimentary records through recurring glaciations or due to the inaccessibility of preserved records. Here, we explored Quaternary sediments that were deposited during the Marine Isotope Stage (MIS) 8 glaciation at least around 250 ka, and which were recovered in a drilling that was sunk into an overdeepened bedrock trough west of Bern (Switzerland). We analyzed the sediment bulk chemical composition of the deposits to investigate the supply of the material to the area by either the Aare Glacier, the Saane Glacier, or the Valais Glacier, and we complement this investigation with the results of heavy mineral analyses and geochemical information from detrital garnet. The potential confluence of the Valais and the Aare glaciers in the Bern area makes this location ideal for such an analysis. We determined the sediment bulk chemical signal of the various lithological units in the central Swiss Alps where the glaciers originated, which we used as endmembers for our provenance analysis. We then combined the results of this fingerprinting with the existing information on the sedimentary succession and its deposition history. This sedimentary suite is composed of two sequences, Sequence A (lower) and Sequence B (upper), both of which comprise a basal till that is overlain by lacustrine sediments. The till at the base of Sequence A was formed by the Aare Glacier. The overlying lacustrine deposits of an ice-contact lake were mainly supplied by the Aare Glacier. The basal till in Sequence B was also formed by the Aare Glacier. For the lacustrine deposits in Sequence B, the heavy mineral and garnet geochemical data indicate that the sediment was supplied by the Aare and the Saane glaciers. We use these findings for a paleogeographic reconstruction. During the time when Sequence A and the basal till in Sequence B were deposited, the Aare Glacier dominated the area. This strongly contrasts with the situation during the LGM, when the Aare Glacier was deflected by the Valais Glacier towards the northeast. The Valais Glacier was probably less extensive during MIS 8, but it was potentially presentin the area, and it could have been essential for damming a lake in which the material supplied by the Aare and the Saane glaciers accumulated. In conclusion, combining provenance with sedimentological data, we could document how sediment was supplied to the investigated overdeepened basin during the MIS 8 glacial period and how glaciers were arranged in a way that was markedly different from the LGM

    From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland

    Get PDF
    We drilled a 210 m-thick succession of Quaternary sediments and extended it 30 m upsection with information that we collected from an adjacent outcrop. In the 240 m-thick succession we identified 12 different lithofacies, grouped them into five facies assemblages, and distinguished two major sedimentary sequences. A sharp contact at 103 m depth cuts off cross-beds in sequence A and separates them from the overlying horizontal beds in sequence B. Although the lowermost facies assemblage of each sequence includes a till deposited during a period of ice cover, the two tills differ from each other. In particular, the till at the base of sequence A is dominated by large clasts derived from the underlying Molasse bedrock, whereas the till at the base of sequence B has no such Molasse components. Furthermore, the till in sequence A bears evidence of glaciotectonic deformation. Both tills are overlain by thick assemblages of subaqueous, most likely glaciolacustrine and lacustrine facies elements. The cross-bedded and steeply inclined sand, gravel, and diamictic beds of sequence A are interpreted as deposits of density currents in a subaqueous ice-contact fan system within a proglacial lake. In contrast, the lacustrine sediments in sequence B are considered to record a less energetic environment where the material was most likely deposited in a prodelta setting that gradually developed into a delta plain. Towards the top, sequence B evolves into a fluvial system recorded in sequence C, when large sediment fluxes of a possibly advancing glacier resulted in a widespread cover of the region by a thick gravel unit. Feldspar luminescence dating on two samples from a sand layer at the top of sequence B provided uncorrected ages of 250.3 ± 80.2 and 251.3 ± 59.8 ka. The combination of these ages with lithostratigraphic correlations of sedimentary sequences encountered in neighboring scientific drillings suggests that sequence B was deposited between Marine Isotope Stage 8 (MIS 8; 300–243 ka) and MIS 7 (243–191 ka). This depositional age marks the end of one stage of overdeepening–fill in the perialpine Aare Valley near Bern

    Palynological investigations reveal Eemian interglacial vegetation dynamics at Spiezberg, Bernese Alps, Switzerland

    Get PDF
    Interglacial pollen records are valuable archives of past vegetation dynamics and provide important information about vegetation responses to different-than-today climates. Interglacial pollen archives pre-dating the Last Glacial Maximum (LGM) are scarce on the Swiss Plateau in contrast to the many available Late Glacial and Holocene records. This is mainly due to the rapidly changing palaeo- environmental conditions throughout the Quaternary and the low preservation potential of material suitable for palynological investigations. The Spiezberg site offers a palynological record situated most proximal to the Alps in Switzerland. Previous investigations tentatively assigned this record to the Eemian interglacial (MIS 5e). We have conducted additional pollen analytical investigations to increase the quantity of pollen information. Besides biostratigraphic interpretations, we use numerical methods such as distance analysis (distantia) and ordination techniques (PCA) to evaluate the similarities and differences between the Spiezberg record and its geographically and chronostratigraphically closest physically dated (U/Th, luminescence) analogues from the Eemian (MIS 5e) and Meikirch 3 (MIS 7a) interglacials. Our palynological investigations reveal the predominance of closed temperate forests with abundant fir (Abies) and spruce (Picea) as well as evergreen broad-leaved taxa (e.g. Hedera). The attri- bution to the Eemian interglacial relies on the observation of very rare beech (Fagus) occurrences, a phase with prominent yew (Taxus) and the unimportance of hornbeam (Carpinus), all of which are typical Eemian features on the Swiss Plateau. An Eemian age is supported by the numerical comparison with the Beerenmo€sli (MIS 5e) and Meikirch 3 (MIS 7a) reference records. Furthermore, the Picea, Taxus and Fagus dynamics observed on the Swiss Plateau during the Eemian are in excellent agreement with vegetational patterns observed elsewhere in Central Europe. Surprisingly, Carpinus was almost absent on the Swiss Plateau during the Eemian, whereas it was a major component of the forest at other European sites with a similar elevation as Spiezberg. We explain this by environmental conditions and the strong competition with Abies alba. In particular, considering the European Eemian vegetation history and the results of our reconstructions from the Swiss Plateau, we find that Abies alba was a highly competitive tree under natural warmer-than-today conditions. This finding provides further evidence that Abies alba may benefit from future climate warming

    Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development through Its Interaction with an FtsH12-FtsHi Protease Complex

    Full text link
    Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. mutants lacking plastidial NAD-dependent MDH () are embryo-lethal, and constitutive silencing (1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in 1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of , while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles 1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function

    History and Applications of Dust Devil Studies

    Get PDF
    Studies of dust devils, and their impact on society, are reviewed. Dust devils have been noted since antiquity, and have been documented in many countries, as well as on the planet Mars. As time-variable vortex entities, they have become a cultural motif. Three major stimuli of dust devil research are identified, nuclear testing, terrestrial climate studies, and perhaps most significantly, Mars research. Dust devils present an occasional safety hazard to light structures and have caused several deaths

    Vom Schlachtfeld zur Oase? Notieren als Schreibverfahren bei Christoph Geiser

    No full text

    Clubbing. Bernische Museum- und Lesegesellschaft

    No full text
    Ausstellung in der Bibliothek MĂŒnstergasse in Bern vom 19. August bis 5. Dezember 2021. Was vor 230 Jahren mit der bĂŒrgerlichen Lesegesellschaft als Bibliothek und Diskussionsclub kurz nach der französischen Revolution begann, schwang sich mit der Museumgesellschaft im 19. Jahrhundert zum place to be in der Bundesstadt auf: Feiern, Spielen, Kegeln, Lesen hiess das Motto wĂ€hrend der BlĂŒtezeit im Gesellschaftshaus am Bundesplatz, dem heutigen Sitz der Berner Kantonalbank. Die beiden Gesellschaften vereinten sich wĂ€hrend des Zweiten Weltkrieges und prĂ€gten das bernische Kultur- und Gesellschaftsleben bis zu ihrer Liquidation 1979. Ihre BĂŒchersammlungen befinden sich heute in der Obhut der UniversitĂ€tsbibliothek Bern
    corecore