10 research outputs found

    The Popeye Domain Containing Genes and Their Function in Striated Muscle

    No full text
    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins is rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (Dystrophin), compartmentalization (Caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (Dysferlin), or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggests that this family of cAMP-binding proteins probably serves multiple roles in striated muscle

    The cAMP-binding Popdc proteins have a redundant function in the heart

    Get PDF
    Popdc (Popeye-domain-containing) genes encode membrane-bound proteins and are abundantly present in cardiac myocytes and in skeletal muscle fibres. Functional analysis of Popdc1 (Bves) and Popdc2 in mice and of popdc2 in zebrafish revealed an overlapping role for proper electrical conduction in the heart and maintaining structural integrity of skeletal muscle. Popdc proteins mediate cAMP signalling and modulate the biological activity of interacting proteins. The two-pore channel TREK-1 interacts with all three Popdc proteins. In Xenopus oocytes, the presence of Popdc proteins causes an enhanced membrane transport leading to an increase in TREK-1 current, which is blocked when cAMP levels are increased. Another important Popdc-interacting protein is caveolin 3, and the loss of Popdc1 affects caveolar size. Thus a family of membrane-bound cAMP-binding proteins has been identified, which modulate the subcellular localization of effector proteins involved in organizing signalling complexes and assuring proper membrane physiology of cardiac myocytes

    POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart

    Get PDF
    The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the β-adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control

    Popeye domain containing 1 (Popdc1/Bves) is a caveolae-associated protein involved in ischemia tolerance

    Get PDF
    Popeye domain containing1 (Popdc1), also named Bves, is an evolutionary conserved membrane protein. Despite its high expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-β-cyclodextrin or by ischemia/reperfusion (I/R) abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density. Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes displayed impaired [Ca(+2)](i) transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-associated protein important for the preservation of caveolae structural and functional integrity and for heart protection

    Mice lacking the cAMP effector protein POPDC1 show enhanced hippocampal synaptic plasticity

    No full text
    Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cAMP-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of POPDC1 (or BVES), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as PKA and EPAC, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have a unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wildtype mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling

    POPDC2 a novel susceptibility gene for conduction disorders

    Get PDF
    Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders

    POPDC2 a novel susceptibility gene for conduction disorders

    No full text
    Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188*), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK 1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188* causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188* knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188* loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK 1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders
    corecore