2,086 research outputs found

    Quantum to classical crossover in the 2D easy-plane XXZ model

    Full text link
    Ground-state and thermodynamical properties of the spin-1/2 two-dimensional easy-plane XXZ model are investigated by both a Green's-function approach and by Lanczos diagonalizations on lattices with up to 36 sites. We calculate the spatial and temperature dependences of various spin correlation functions, as well as the wave-vector dependence of the spin susceptibility for all anisotropy parameters Δ\Delta. In the easy--plane ferromagnetic region (−1<Δ<0)(-1< \Delta < 0), the longitudinal correlators of spins at distance rr change sign at a finite temperature T0(Δ,r)T_0(\Delta, {\bf r}). This transition, observed in the 2D case for the first time, can be interpreted as a quantum to classical crossover.Comment: 4 pages, 6 figures, Contribution to the Ising Centennial Colloquium, ICM2000, Belo Horizonte, Brazil, August 200

    Theory of short-range magnetic order for the t-J model

    Full text link
    We present a self-consistent theory of magnetic short-range order based on a spin-rotation-invariant slave-boson representation of the 2D t-J model. In the functional-integral scheme, at the nearest-neighbour pair-approximation level, the bosonized t-J Lagrangian is transformed to a classical Heisenberg model with an effective (doping-dependent) exchange interaction which takes into account the interrelation of ``itinerant'' and ``localized'' magnetic behaviour. Evaluating the theory in the saddle-point approximation, we find a suppression of antiferromagnetic and incommensurate spiral long-range-ordered phases in the favour of a paramagnetic phase with pronounced antiferromagnetic short-range correlations.Comment: 2 pages, 1 Postscript figure, LTpaper.sty, Proc. XXI Int. Conf. on Low Temp. Phys. Prague 9

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    Green's-function theory of the Heisenberg ferromagnet in a magnetic field

    Full text link
    We present a second-order Green's-function theory of the one- and two-dimensional S=1/2 ferromagnet in a magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced and determined by exact relations. The transverse and longitudinal spin correlation functions and thermodynamic properties (magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are performed. A good agreement of the Green's-function theory with the exact data, with recent quantum Monte Carlo results, and with the spin polarization of a ν=1\nu=1 quantum Hall ferromagnet is obtained. The field dependences of the position and height of the maximum in the temperature dependence of the susceptibility are found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in Landau's theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory provides an improved description of magnetic short-range order as compared with the random phase approximation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-temperature maximum are described by power laws. At higher fields in one and two dimensions, the temperature of the specific heat maximum linearly increases with the field.Comment: 9 pages, 9 figure

    New Perspectives in Sinographic Language Processing Through the Use of Character Structure

    Full text link
    Chinese characters have a complex and hierarchical graphical structure carrying both semantic and phonetic information. We use this structure to enhance the text model and obtain better results in standard NLP operations. First of all, to tackle the problem of graphical variation we define allographic classes of characters. Next, the relation of inclusion of a subcharacter in a characters, provides us with a directed graph of allographic classes. We provide this graph with two weights: semanticity (semantic relation between subcharacter and character) and phoneticity (phonetic relation) and calculate "most semantic subcharacter paths" for each character. Finally, adding the information contained in these paths to unigrams we claim to increase the efficiency of text mining methods. We evaluate our method on a text classification task on two corpora (Chinese and Japanese) of a total of 18 million characters and get an improvement of 3% on an already high baseline of 89.6% precision, obtained by a linear SVM classifier. Other possible applications and perspectives of the system are discussed.Comment: 17 pages, 5 figures, presented at CICLing 201

    Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks

    Get PDF
    Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states

    A Left-handed β Helix Revealed by the Crystal Structure of a Carbonic Anhydrase from the Archaeon Methanosarcina thermophila

    Get PDF
    A carbonic anhydrase from the thermophilic archaeon Methanosarcina thermophila that exhibits no significant sequence similarity to known carbonic anhydrases has recently been characterized. Here we present the structure of this enzyme, which adopts a left-handed parallel β-helix fold. This fold is of particular interest since it contains only left-handed crossover connections between the parallel β-strands, which so far have been observed very infrequently. The active form of the enzyme is a trimer with three zinc-containing active sites, each located at the interface between two monomers. While the arrangement of active site groups differs between this enzyme and the carbonic anhydrases from higher vertebrates, there are structural similarities in the zinc coordination environment, suggestive of convergent evolution dictated by the chemical requirements for catalysis of the same reaction. Based on sequence similarities, the structure of this enzyme is the prototype of a new class of carbonic anhydrases with representatives in all three phylogenetic domains of life

    Magnetic order in the quasi-two-dimensional easy-plane XXZ model

    Full text link
    A Green's-function theory of antiferromagnetic short-range and long-range order (LRO) in the S=1/2S=1/2 quasi-two-dimensional easy-plane XXZ model is presented. As the main new result, {\it two} phase transitions due to the combined influence of spatial and spin anisotropy are found, where below the higher and lower N\'{e}el temperature there occurs LRO in the transverse and in both the transverse and longitudinal spin correlators, respectively. Comparing the theory with neutron-scattering data for the correlation length of La2CuO4\rm La_2CuO_4, a very good agreement in the whole temperature dependence is obtained. Moreover, for La2CuO4\rm La_2CuO_4, Sr2CuO2Cl2\rm Sr_2CuO_2Cl_2, and Ca0.85Sr0.15CuO2\rm Ca_{0.85}Sr_{0.15}CuO_2 the second phase with longitudinal LRO is predicted to appear far below room temperature.Comment: 7 pages, 5 figure

    Molybdenum-cofactor-containing enzymes: structure and mechanism

    Get PDF
    Molybdenum-containing enzymes catalyze basic metabolic reactions in the nitrogen, sulfur, and carbon cycles. With the exception of the nitrogenase cofactor, molybdenum is incorporated into proteins as the molybdenum cofactor that contains a mononuclear molybdenum atom coordinated to the sulfur atoms of a pterin derivative named molybdopterin. Certain microorganisms can also utilize tungsten in a similar fashion. Molybdenum-cofactor-containing enzymes catalyze the transfer of an oxygen atom, ultimately derived from or incorporated into water, to or from a substrate in a two-electron redox reaction. On the basis of sequence alignments and spectroscopic properties, four families of molybdenum-cofactor-containing enzymes have been identified. The available crystallographic structures for members of these families are discussed within the framework of the active site structure and catalytic mechanisms of molybdenum-cofactor-containing enzymes. Although the function of the molybdopterin ligand has not yet been conclusively established, interactions of this ligand with the coordinated metal are sensitive to the oxidation state, indicating that the molybdopterin may be directly involved in the enzymatic mechanism
    • …
    corecore