8 research outputs found

    Effects of Freezing on Soil Temperature, Freezing Front Propagation and Moisture Redistribution in Peat: Laboratory Investigations

    Get PDF
    There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with subzero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice) propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost

    Case studies of geothermal system response to perturbations in groundwater flow and thermal regimes

    Get PDF
    Global demands for energy efficient heating and cooling systems coupled with rising commitments toward net zero emissions is resulting in wide deployment of shallow geothermal systems, typically installed to a depth of 100 to 200m, and in the continued growth of the global ground source heat pump (GSHP) market. Ground coupled heat pump (GCHP) systems take up to 85% of the global GSHP market. With increasing deployment of GCHP systems in urban areas coping with limited regulations, there is growing potential and risk for these systems to impact the subsurface thermal regime and to interact with each other or with nearby heat‐sensitive subsurface infrastructures. In this paper, we present three numerical modelling case studies, from the UK and Canada, which examine GCHP systems’ response to perturbation of the wider hydrogeological and thermal regimes. The studies demonstrate how GCHP systems can be impacted by external influences and perturbations arising from subsurface activities that change the thermal and hydraulic regimes in the area surrounding these systems. Additional subsurface heat loads near existing schemes are found to have varied impacts on system efficiency with reduction ranging from <1 % to 8 %, while changes in groundwater flow rates (due to a nearby groundwater abstraction) reduced the effective thermal conductivity at the study site by 13%. The findings support the argument in favour of regulation of GCHP systems or, to a minimum, their registration with records of locations and approximate heat pump capacity – even though these systems do not abstract / inject groundwater

    Radar Determination of the Spatial Structure of Hydraulic Conductivity

    No full text
    Spatial variability of hydraulic conductivity exerts a predominant control on the flow of fluid through porous media. Heterogeneities influence advective pathways, hydrodynamic dispersion, and density-dependent dispersion; they are, therefore, a key concern for studies of ground water resource development, contaminant transport, and reservoir engineering. Ground-penetrating radar contributes to the remote, geophysical characterization of the macroscale variability of natural porous media. On a controlled excavation of a glacial-fluvial sand and gravel deposit in the Fan-shawe Delta area (Ontario, Canada), the hydraulic conductivity field of a 45 × 3 m vertical exposure was characterized using constant-head permeameter measurements performed on undisturbed horizontal sediment cores. Ground-penetrating radar data were collected along the excavation face in the form of both reflection and common midpoint surveys. Comparison of geostatistical analyses of the permeameter measurements and the radar data suggests that the horizontal correlation structure of radar stack velocity can be used to directly infer the horizontal correlation structure of hydraulic conductivity. The averaging nature of the common midpoint survey is manifest in the vertical correlation structure of stack velocity, making it less useful. Radar reflection data do not exhibit a spatial structure similar to that of hydraulic conductivity possibly because reflections are a result of material property contrasts rather than the material properties themselves

    Space-Local Spectral Texture Segmentation Applied to Characterizing the Heterogeneity of Hydraulic Conductivity

    No full text
    Spatial variability of hydraulic conductivity exerts a predominant control on groundwater flow by influencing advective pathways, hydrodynamic dispersion, and density-dependent instabilities. Space-local spectral texture segmentation aids in the macroscale characterization of the spatial heterogeneity of natural porous media via an outcrop analogue approach. Detailed photographic data sets were obtained for a 45 m × 3 m vertical section of glacial-fluvial sand and gravel deposit in the Fanshawe Delta area (Ontario, Canada). High-resolution texture maps of the sedimentary exposure are generated using a texture segmentation routine based on the space-local S transform with the photographic data sets used as input. Geostatistical analyses of the texture maps reveal similarity between the spatial correlation structures of spectral texture and hydraulic conductivity as determined from constant-head permeameter testing of sediment cores. Conditioned on the permeameter measurements, texture maps can be used to provide local continuous estimates of the hydraulic conductivity field at a spatial resolution equal to the sediment core dimensions
    corecore