
Case study/ 

Case studies of geothermal system response to perturbations in 

groundwater flow and thermal regimes 

Corinna Abesser 

Corresponding author: British Geological Survey, Maclean Building, Crowmarsh Gifford, 

Wallingford, OX10 8BB, Oxfordshire, UK; 0044 1491 692296, cabe@bgs.ac.uk 

 

Robert A. Schincariol 

Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, N6A 

5B7, London, ON, Canada; 519 661 3732; schincar@uwo.ca 

 

Jasmin Raymond 

Institut national de la recherche scientifique, 490 Couronne Street, G1K 9A9, Quebec City, 

QC, Canada; 418 654 2559; jasmin.raymond@inrs.ca 

 

Alejandro García Gil 

Geological Survey of Spain, C/Rios Rosas 23, 28003 Madrid, Spain; 0034 976 555153; 

a.garcia@igme.es 

 

Ronan Drysdale 

Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, N6A 

5B7, London, ON, Canada; 519 661 3732; rdrysda@uwo.ca  

 

 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1111/gwat.13086

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgwat.13086&domain=pdf&date_stamp=2021-02-14


 

Alex Piatek 

Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, N6A 

5B7, London, ON, Canada; 519 661 3732; apiatek@uwo.ca  

 

Nicolò Giordano 

Institut national de la recherche scientifique, 490 Couronne Street, G1K 9A9, Quebec City, 

QC, Canada; 418 654 2652; nicolo.giordano@ete.inrs.ca 

 

Nehed Jaziri 

Institut national de la recherche scientifique, 490 Couronne Street, G1K 9A9, Quebec City, 

QC, Canada; 418 654 2559; nehed.jaziri@yahoo.fr 

 

John Molson 

Département de géologie et de génie géologique, Université Laval, 1065 Avenue de la 

Médecine, G1V 0A6, Quebec City, QC, Canada; 418 656 5713; john.molson@ggl.ulaval.ca 

 

Conflict of interest: None. 

 

Key words: geothermal, ground source heat pump, interference, groundwater, Canada, 

United Kingdom 

 

Article Impact Statement: Modeling studies from UK and Canada showing how 

perturbations in hydrogeological and thermal regimes affect geothermal system efficiency. 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

Abstract 

Global demands for energy efficient heating and cooling systems coupled with rising 

commitments toward net zero emissions is resulting in wide deployment of shallow 

geothermal systems, typically installed to a depth of 100 to 200m, and in the continued 

growth of the global ground source heat pump (GSHP) market. Ground coupled heat pump 

(GCHP) systems take up to 85% of the global GSHP market. With increasing deployment of 

GCHP systems in urban areas coping with limited regulations, there is growing potential and 

risk for these systems to impact the subsurface thermal regime and to interact with each other 

or with nearby heat-sensitive subsurface infrastructures. In this paper, we present three 

numerical modelling case studies, from the UK and Canada, which examine GCHP systems‘ 

response to perturbation of the wider hydrogeological and thermal regimes. The studies 

demonstrate how GCHP systems can be impacted by external influences and perturbations 

arising from subsurface activities that change the thermal and hydraulic regimes in the area 

surrounding these systems. Additional subsurface heat loads near existing schemes are found 

to have varied impacts on system efficiency with reduction ranging from <1 % to 8 %, while 

changes in groundwater flow rates (due to a nearby groundwater abstraction) reduced the 

effective thermal conductivity at the study site by 13%. The findings support the argument in 

favour of regulation of GCHP systems or, to a minimum, their registration with records of 

locations and approximate heat pump capacity – even though these systems do not abstract / 

inject groundwater. 
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Introduction 

Ground source heat pump (GSHP) systems provide an efficient and clean technology 

for heating and cooling of buildings in the worldwide energy market using a renewable 

energy resource. With increasing deployment of these systems in the subsurface of urban 

areas, there is growing risk for these systems to impact the subsurface thermal regime and 

interact with other heat-sensitive subsurface infrastructures, such as tunnels, building 

foundations or other shallow energy systems including underground thermal energy storage 

(Bidarmaghz et al. 2019; 2020). This impact can be positive or negative, depending on the 

system operating mode and the type of thermal interference. 

When used in heating mode, GSHPs extract heat from the ground, i.e. they use the 

heat resource that accumulates in the urban subsurface, partly due to anthropogenic activities. 

Such heat accumulation (also referred to as the Subsurface Urban Heat Island – SUHI) is a 

widely observed phenomenon, which increases the urban technical potential of geothermal 

use by up to 40% when compared to rural conditions (Rivera et al. 2017). The SUHI 

phenomenon is attributed to land use changes associated with urbanisation, specifically heat 

losses from building basements (Ferguson and Woodbury 2005), pavements (Taylor and 

Stefan 2009) and buried infrastructures, such as tunnels or sewers (Menberg et al. 2013a), 

which have resulted in elevated groundwater temperatures beneath many cities (Rivera et al. 

2017; Zhu et al. 2017; Banks et al. 2009; Taniguchi et al. 2005; Farr et al. 2017; Headon et al. 

2009) causing temperature perturbations to depths of 100 m or more.  When used in cooling 

mode, ground source heat pump systems reject heat to the subsurface, hence have 

considerable potential to contribute to and enhance the SUHI effect.  

In either case, these systems benefit from the thermal inertia and storage capacity of 

the subsurface, which permits its use for both heating and cooling. However, there is a fragile 

equilibrium between the heat pump system‘s thermal loads and the rate of thermal renewal in 
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the subsurface. This equilibrium needs to be maintained over the life of the system to ensure 

sufficient energy savings. However, many factors can affect this thermal equilibrium, such as 

unbalanced ground loads, groundwater flow and interferences with other energy systems or 

subsurface infrastructure.       

There are three main types of GSHP systems (Self et al. 2013; Banks 2012; Dowling 

et al. 2016): (1) ground-coupled heat pump (GCHP) or closed-loop systems which use a 

borehole heat exchanger (BHE) installed in the subsurface through which a heat exchanger 

fluid is circulated, (2) groundwater heat pump (GWHP) or open-loop systems which use 

pumped groundwater for the heat exchange, e.g. via an intermediate plate heat exchanger 

installed in building at the surface, and (3) surface water sourced open and closed loop 

systems.  This paper focuses on GCHP systems becoming one of the most widely used, 

currently occupying 85% of the ground source heat pump market share worldwide (Gupta 

and Singh Bais 2018), due in part to their reduced potential environmental impact. 

Regulations for these systems vary between countries, ranging from (1) no regulations 

(systems do not require any permits or registration), to (2) notification schemes (no permits 

but need to be registered/reported to authorities) and (3) permitting schemes (systems require 

relevant permits). A review of guidelines can be found in Dehkordi and Schincariol 2014 and 

Haehnlein et al. 2010.  In Canada, regulations exist in provinces to protect groundwater 

resources from potential threats that can occur during geothermal system installation and 

operation. There is, however, no regulation, to help maintain the thermal equilibrium of the 

subsurface. In the UK, GCHP systems are unregulated, requiring neither a permit nor 

registration. 

The design and operation of GCHP systems is commonly based on the assumption of 

conductive heat transfer in the subsurface (Bernier 2001), even though advection (i.e. 

groundwater flow) can have a significant impact on the subsurface thermal equilibrium and 
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the long-term performance of the systems, especially when the Darcy flux is greater than 

1×10
-7

 m s
-1

 (Dehkordi and Schincariol 2014; Ferguson 2015). While improving long-term 

performances of systems by dissipating heat/ cold injected into the ground (Raymond et al. 

2011; Zanchini et al. 2012), it also enlarges the system‘s footprint as well as its sensitivity to 

far-field boundary conditions. Numerical tools are available to optimize the operation of 

GCHPs under the influence of groundwater flow (Fujii et al. 2005), but estimation of site-

specific groundwater fluxes can be difficult to define accurately. Thermal response test 

(TRT) can be performed on a single BHE to evaluate an effective subsurface thermal 

conductivity affected by the groundwater flow (Signorelli et al. 2007; Bozdağ et al. 2008). 

Peclet number analysis made with downhole temperature measurements during TRT can 

further help distinguish between conductive and advective heat transfer (Koubikana Pambou 

et al. 2019). This approach can be useful, but neglects the fact that flow conditions, and hence 

effective thermal properties, can change over time (Abesser et al. 2020). 

GCHPs have been studied in urban environments with respect to their effects on the 

subsurface thermal regime (Rivera et al. 2015), and the impacts of building and groundcover 

on a single BHE system (Rivera et al. 2016) has been assessed. Various modelling studies 

(e.g. Hein et al. 2016; Casasso and Sethi 2014; Hecht-Méndez et al. 2013) have investigated 

system sensitivity to key hydrogeological and operational parameters to identify the controls 

on GCHPs functional efficiency. The focus of these studies has been on isolated systems, 

where flow conditions and background subsurface temperature are assumed to be constant, 

impacted by the modelled system only during its operation. Extensive monitoring and 

modelling studies have been undertaken on large BHE systems at the EPIC systems site and 

the Ball State University system to investigate internal interferences between BHE within the 

same design field (Florea et al. 2017). However, less attention has been paid to the effects on 

GCHPs functional efficiency from external influences, such as perturbations in the wider 
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hydrogeological and thermal regime, e.g. due to urbanization, groundwater abstraction, 

multiple BHEs within tight residential clusters or competing subsurface uses.  

This paper details three modelling-based cases studies that investigate the changes in 

the performance of typical GCHP installation (different designs and operational pattern) in 

response to perturbations in the hydrogeological and/or thermal regimes. The specific 

modelling objectives vary for the different case studies, but the overall aims of this paper are 

to compare (1) GCHP systems‘ response to changing state or process variables within 

different hydrogeological and thermal systems, and (2) the impact of interferences with other 

subsurface uses on the GCHPs functional efficiency. In doing so, we will identify general 

factors that need to be considered in the planning and design of different, potentially 

competing, subsurface uses.  

 

Research methodology 

Modelling within all three case studies is performed using FEFLOW
®
, a three-

dimensional finite-element fully coupled variable-density groundwater flow and transport 

code. FEFLOW
®
 offers different approaches for simulating heat transport around the 

GCHP‘s (Diersch et al. 2010; Diersch et al. 2011) through implementation of the BHE: (1) 

via a Heat Nodal Sink/Source Boundary Condition within a fully discretized two-dimensional 

(FD2DM) or three-dimensional model (FD3DM) (this approach simulates BHE thermal 

exchange with the surrounding soil/rock, while thermal transfers within the BHE 

configuration are not explicitly considered); (2) by discretizing all borehole elements and 

assigning flow and thermal material properties on a nodal/element basis in a FD3DM; or (3) 

via  built-in modules, based on numerical (Al-Khoury and Bonnier 2006; Al-Khoury et al. 

2005) or analytical (Eskilson and Claesson 1988) methods, where the BHE is represented by 

a simplified 1-dimensional (1D) element, inserted at the centre node of the BHE and coupled 
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with the rest of the model domain. FEFLOW
®

 solves the governing flow and heat transport 

equations for the area surrounding the BHE; a BHE solution is coupled with the rest of the 

model domain through the temperatures at borehole nodes. Modelling studies 1 and 3 applied 

the built- in, discrete-element BHE solution (Approach 3), while modelling study 2 simulated 

heat exchange via a nodal boundary condition (Approach 1). 

 

Modelling Study I: University of Western Ontario (UWO) campus, Canada 

Objectives 

This case study has three main objectives: (1) to assess how a functioning GCHP 

system, serving a small portion of a building on the University of Western Ontario (UWO) 

campus, could be expanded within the space available between buildings, (2) to investigate 

the effects of a future upgrading BHE field installation on the efficiency of the existing 

system and (3) to assess the importance of fully accounting for near surface thermal 

disturbances in the modelling process.  

Study site 

The study site is a 450 m by 250 m area aligned with regional groundwater flow 

towards the south (Figure 1). The site contains two active vertical BHEs (90m) and two 

horizontal ground heat exchangers (Figure 1). Three monitoring boreholes with thermistors at 

30 m, 45 m, 60 m, 75 m, and 90 m depth are adjacent to the vertical BHE. The vertical BHEs 

and monitoring boreholes extend to a depth of 90 m, through 34 m of glacial till and into 

Paleozoic limestone and dolostone formations (Armstrong and Carter 2010). The upper 

portion of the till is clayey silt, stone poor, has a relatively low hydraulic conductivity, and 

often acts as a confining layer or aquitard (Matrix Solutions Inc. 2014). While the underlying 

silty-sandy till can locally act as an aquifer (Schwartz 1974), regionally it is considered an 

aquitard. The upper few meters of weathered bedrock surface, where fractured and/or karstic, 
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is considered an aquifer (Matrix Solutions Inc. 2014; Schlumberger 2011). Overall, the 

limestone and dolostone members vary from fossiliferous to crystalline, and massive to 

bedded; generally, they can be considered aquifers (Matrix Solutions Inc., 2014). 

The pipe dimensions and operational requirements for the vertical geothermal system 

can be found in Supporting Information Table S1.  The functioning BHE system operates in 

conjunction with a shallow horizontal geothermal system, following an alternating 7-day 

cycle. Most BHE systems do not operate on an intermittent cycle. The BHE system is nearly 

balanced with six cooling months (May to October), two transitionary months (April and 

November) where the system may alternate between heating and cooling, and four heating 

months. 

 

Methodology 

A 3D- model was developed of the study site. The model hydraulic head boundary 

conditions (Figure 1) were determined from overburden and bedrock aquifer potentiometric 

maps (Matrix Solutions Inc., 2014). For steady state and transient simulations, the lateral and 

basal boundary conditions remained constant. The temperature boundary at model base 

(9.4°C) was derived from a geothermal study performed by Judge (1972). Temperatures at 

depths of 200 m are relatively stable, and unaffected by climate shifts within the last 200 

years (Pollack and Huang 2000; Kukkonen et al. 2011). The ground surface boundary 

condition was derived from measured air temperatures using relations developed by Taylor 

and Stefan (2009). For the steady state simulations the surface boundary was set at a constant 

10.1 ◦C for grass and 13.2 ◦C for asphalt and concrete. As discussed later the transient model 

fully accounted for monthly fluctuations in these surface temperatures. At the lateral 

boundaries, a zero-gradient (adiabatic) temperature condition was used. Buildings and sewer 
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systems were not included in the steady-state model but were added to a transient model as 

part of the spin-up process.  

Physical model properties (Table 1) were estimated from regional studies (Matrix 

Solutions Inc. 2014) in correlation with the site BHE borehole logs, and borehole logs (Judge 

and Beck 1967). Thermal conductivities for the bedrock units were measured by Judge 

(1972), overburden values were estimated from Banks (2008). Volumetric heat capacity 

values were estimated from Banks (2008). Porosity was measured by Judge (1972). 

Table 1. Model parameters. 

Geologic Unit Hydraulic 

Conductivity
1, 2 

 [m s
-1

]
 

 Porosity
3 

Thermal 

Conductivity
 3,4 

[W m
-1

 K
-1

] 

Heat Capacity
4
  

[MJ m
-3

 K
-1

] 

Kx,y Kz 

Glacial Till 1x10
-7

 1x10
-8

 0.3 3.72 2.4 

Weathered contact 1x10
-4

 1x10
-5

 0.15 3.05 2.3 

Dundee 1x10
-5

 1x10
-6

 0.05 

 

 

3.05 2.3 

Lucas Formation  1x10
-5

 1x10
-6

 3.05 2.2 

Bois Blanc  1x10
-5

 1x10
-6

 3.56 2.3 

Bass Island  1x10
-5

 1x10
-6

 4.18 2.4 

1
 Matrix Solutions Inc. (2014), 

2
 Judge and Beck (1967), 

3
 Judge (1972), 

4
 Banks (2008) 

 

Firstly, an expansion to a BHE field with a spacing of 10 m (18 BHEs) and a field 

with a spacing of 5 m (69 BHEs) were assessed. Secondly, to investigate potential upgradient 

influences, a similarly sized 18 BHE field was added adjacent to a nearby building (Figure 1). 

Energy for BHE systems is injected for cooling and extracted for heating. In balanced 

systems, the energy difference between injection and extraction is close to 0. This study 

defines the total energy exchanged as the absolute value of the sum of injected and extracted 

energy. It was used to assess the energy that the systems were able to produce over a lifespan 

of 20 years. 
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Model Input and Spin-up Process 

For the steady-state model, initial modelling attempts using present-day infrastructure 

resulted in greater heat accumulation in the upper 80 m than shown from the monitoring 

borehole data prior to BHE activation. It was determined that the model spin-up (i.e. a set of 

repeated runs to determine the initial model conditions that best represent the system‘s 

thermal-dynamic balance) needed to be completed in phases. There were three main phases; 

(1) the initial steady-state spin-up, (2) a multi-step transient spin-up, and (3) the final working 

model which would serve as initial conditions for predictive models. The transient model 

spin-up was started in 1942, when little infrastructure was present at the site, and moved 

through 12 phases, each bringing in buildings, sewage systems, roads, and parking lots as 

they appeared in the aerial photo and building records until 2011. Air temperature climate 

records were used to adjust the average annual temperature for grass cover at the start (9.1°C, 

1942) to the end of the multi-step transient spin-up (August 30
th

 2011, 10.1°C). Building 

basements were represented by a 20°C temperature boundary condition (Menberg et al. 

2013b; Ferguson and Woodbury 2004) set at a depth of 2.5 m. The heat from the basement 

walls are not represented as Thomas and Rees (1998) and Emery et al. (2007) showed that 

heat loss through basement walls was mostly connected to the atmosphere. Asphalt, concrete 

and grass cover temperatures were represented by their respective annual average values 

except for the final 10 years of spin up when the average monthly temperatures were used. A 

temperature of 18.5°C was used for sewage pipe temperatures which correlated with nearby 

sewage treatment facility data and Menberg et al. (2013b).  

Mesh spacing was optimized around the BHE at 0.46 m, following Diersch et al. 

(2010), and increased laterally. Vertical discretization was 0.1 m for the first 1.0 m, and then 

followed at 0.25 m, 0.5 m, 1 m, and 5 m for depths up to 3.5 m, 6 m, 10 m, and 200 m. Mesh 

sensitivity analyses were completed to ensure that the thermal transport solution was mesh-
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independent, i.e. not influenced by further discretization. The functioning BHE system was 

incorporated in the model as discrete linear elements (Diersch et al. 2010) representing the 

vertical U-tube. BHE inlet temperatures and flow rates varied depending on operational 

cycles and were recorded and implemented in the model calibration and steady state initial 

conditions phases. An average inlet temperature was applied for each month (Table S2). The 

shallow horizontal geothermal system was represented as a specified temperature boundary 

condition matching operating cycles and temperatures.  

 

Results 

The modelled thermal profile of the subsurface prior to geothermal system activation 

compares well to the monitoring data except for a minor divergence (maximum 0.3°C) 

centred around 60 m depth (Figure S1). The cause of the temperature difference may be due 

to localized groundwater flow in fractures in the limestone, or a shifting of thermistors during 

installation. The geoexchange systems were then added to the model. Field data from the 

monitoring boreholes were used to further calibrate the BHE model.  

The average annual energy exchanged, over a 20-year simulation period, for the BHE 

field scenarios is shown in Table 2. By comparison, the active 2 BHE system exchanged an 

average of 46 MWh per year. Expanding the system from 2 to 18 (10 m spacing) BHEs 

resulted in a loss of efficiency of 3% (energy exchanged per BHE), while increasing the 

density to 69 (5 m spacing) BHEs increased this loss to 6.9%. The addition of a similarly 

sized (18 BHE) upgradient installation (Figure 1) only had a minor effect (0.3 % loss in 

average annual energy exchange). The depths to which the thermal perturbations from the 

building, asphalt, and grass cover extend are clearly seen in the thermal difference plot 

(Figure 2). The effect of the upgradient system and groundwater flow is seen in the thermal 

difference plots after 5 and 20 years of operation (Figure 3). Model simulations where the 
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effects of infrastructure were removed by conducting the model spin-up with only grass 

conditions on surface, showed a small increase (2.2%) in annual energy exchange (Table 2). 

The small change in energy exchange was increased to 3.1% when proper accounting for the 

unsaturated zone through the application of Richards Equation in FEFLOW
®
 was removed 

(i.e. phreatic option). Finally, when groundwater flow was set to a zero-gradient (i.e. no 

flow), a much larger decrease in energy exchange (15.8%) was noticed.  

Table 2. Comparison of infrastructure, unsaturated zone, groundwater flow, upgradient field on energy 

exchange for 10 m spaced BHE field, and energy exchange for 5 m spaced BHE field.  

 

 
10 m  

10 m 

 No 

Infrastructure 

10 m  

No Infrastructure or 

unsaturated zone 

10 m 

 No Infrastructure, 

unsaturated zone, or 

groundwater flow 

10 m  

with 

upgradient 

BHE field 

 5 m 

Annual 

Average 

(MWh) 

400 408 412 337 398 1471 

Change in 

energy 

exchange [%] 

Reference 

case 
2.2 3.1 -15.8 -0.3  

 

Discussion 

The current BHE system is expandable within the tight inter-building space with little 

loss in efficiency per borehole. This in itself is a routine investigative outcome. An equivalent 

BHE system operating 100 m upgradient was also found to have minimal impact on the 

downgradient field. This also is an expected outcome as the depth-averaged specific 

discharge across the BHE field is approximately 7x10
-8

 m/s, which by using the screening 

tool developed by Ferguson (2015), puts the system into the boundary area where advective 

effects become more important over conduction. It also correlates with the findings of 

Dehkordi and Schincariol (2014) who found that groundwater influence on ground loop 

temperatures becomes significant at ca. 10
-7

 m/s and higher fluxes. 

A noteworthy finding of this study is the importance of applying the correct initial 

conditions by assessing the appropriate level of model spin-up in relation to BHE functional 
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efficiency. Here, to adequately match near-surface temperatures during initial model 

calibration, a multi-step spin-up process over a 70-year period of infrastructure development 

was required. However, removing infrastructure effects and using a simple unimpacted 

subsurface temperature distribution only affected BHE energy exchange by approximately 

2%. More significant was accounting for the effect of the unsaturated zone on thermal 

transport (3%). Finally, for the site conditions, removing groundwater flow effects had the 

most significant impact on the BHE energy exchange, reducing it by 16%. 

Thermal impacts from infrastructure are known to extend over 100 m deep as shown 

by Ferguson and Woodbury (2004) and this study (Figure 2). However, the effects of 

infrastructure appear to impact minimally BHE energy exchange over 90 m borehole depth 

which is typical for these systems. Additional simulations reducing BHE depth by 50% to 45 

m (not typical), showed, as expected, an increased effect of infrastructure with a 2.7% 

increase in energy exchange. However, this is still considered minimal in light of the 

uncertainty in other model parameters such as hydraulic and thermal conductivities. Overall, 

it can be concluded that properly accounting for surface infrastructure in BHE modelling is 

an onerous process, but had no significant impact on the outcome of this study; and this is 

expected to be the case for most investigations of a similar kind.  

 

Modelling study II: London Road, Reading, UK 

Objectives 

A modelling case study was conducted to (1) assess interactions between systems in 

high-density deployment of GCHP systems in an urban setting typical for the South of the 

UK, where a large increase in use of these systems is predicted (Committee on Climate 

Change 2017), (2) investigate the impact of changing hydrogeological conditions and heating 

loads on the subsurface temperature field (thermal footprint) and system‘s performance.  
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Study Site 

The study site, a residential area in the city of Reading (UK), about 60 km west of 

London (Figure 4), comprises two blocks of semi-detached houses built in the 1930‘s with 

frontage width varying between 5m and 18m and an approximate distance of 65m between 

the blocks. The modelling exercise assumed that each of the 58 properties in the two housing 

blocks is fitted with a separate, vertical-borehole BHE system used to provide seasonal 

heating only (i.e. unbalanced system).  The houses are located about 100 m south of the River 

Thames (Figure 4a). The bedrock geology is Cretaceous Chalk, which in places, is overlain 

by Paleogene (clay with fine-grained sand) or superficial deposits (sand and gravels) and by 

river valley alluvium along the River Thames (Figure 4b). The Chalk is an important, dual-

permeability aquifer of considerable thickness (~400m) that is generally productive due to the 

elevated secondary porosity/ permeability provided by fractures. The heterogeneity of these 

natural fracture systems is a significant control on the distribution of groundwater flow rates 

and flow paths within the aquifer (Bloomfield 1996). The general groundwater flow direction 

at the study site is from the higher grounds in the SSE towards the river in the NNE. Water 

levels at the study site are at around 2-3 m below the ground surface.  

 

Methodology 

A 2D-model was set up of the study site in FEFLOW
®
 (Figure 4c), simulating a fully-

saturated aquifer with an initial thickness of 100 m and a groundwater gradient of 

0.005 m m
-1

 (Darcy flux = 2.9x10
-7

 m s
-1

) representing regional groundwater flow.  Hydraulic 

conductivities (K) within the Chalk are controlled by the distribution and properties of the 

inherent secondary fracture systems which vary considerably with depths as well as between 

different boreholes (Williams et al. 2006). In the absence of site-specific K data, a simpler 2D 

modelling approach was deemed sufficient for this study, integrating hydraulic variables over 
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the vertical thickness of the aquifer, e.g. by assigning an aquifer transmissivity of 500 m
2
 d

-1
 

(equivalent to K = 5.8 x 10
-5

 m s
-1

 for an aquifer thickness of 100 m), estimated from 

statistical analyses of pumping test data (Allen et al. 1997), rather than assigning speculative 

vertical K distributions. The approach is consistent with the model objectives to understand 

the risk of interactions between adjacent systems, which can be assessed from lateral 

temperature distributions provided by the 2D model. 

A temperature of 12 °C was assigned to the entire model area as initial condition, 

consistent with measured  groundwater temperature in the region (Shand et al. 2003), and 

also to inflowing groundwater via a heat transport boundary condition (BC) along the 

southern boundary (Figure 4c). Heat extraction at 58 nodes (corresponding to GCHPs in 

individual dwellings) was defined via a nodal sink/source heat transport BC (Figure 4c). Heat 

loads were calculated for each node (i.e. dwelling) by estimating the heat demand (HD) for a 

single dwelling. Estimations were based on published degree day data, available for the 

period 20 August 2007 to 16 February 2015 (Environmental Change Institute 2015), and 

building parameter values in Table S3 to derive minimum, maximum and median heat 

demand envelope for each day of the year (Figure 5). Monthly average air temperatures were 

assigned to the top boundary. Heat losses from buildings to the subsurface were ignored, as 

considerable losses are assumed to only occur from basements in direct contact with the 

underlying aquifer (Menberg et al. 2013a) – which is not the situation here as the properties 

do not have basements. Furthermore, high permeability settings within an extensive saturated 

zone (as assumed in this study) were found to promote (horizontal) heat dissipation away 

from the basements, thereby reducing the impact on vertical temperature disturbances 

beneath the buildings (Bidarmaghz et al. 2019; Epting et al. 2017b). Other model parameters 

are given in TableS3. The model was run for a period of 25 years for the 3 thermal load 

scenarios representing years with above average, average, and below average air 
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temperatures, which correspond to total heat abstractions of 3.3 MWh, 6.2 MWh and 

10.1 MWh per dwelling per year. Model calibration and validation were not undertaken 

within this study as it relates to hypothetical installations for which there are no actual data. 

Instead, to assess model performance, parameter sensitivity was tested for thermal heating 

loads (LH), transmissivity (T), thermal conductivity (Kth), groundwater gradient (dl/dh), 

thermal dispersivity (αx,αy) and subsurface temperature (tss), and corresponding Normalised 

Sensitivity Coefficients (SC) were calculated as the ratio of relative changes in model output 

over relative changes in parameter input.  

Results  

Periodic ground temperature variations in Figure 5 (dotted lines) within the BHE field 

are typical for seasonal BHE schemes with ground temperatures with decreasing temperature 

during the winter period (heat abstraction) and increasing during the summer period 

(recovery). In the absence of groundwater flow, annual mean ground temperatures decrease 

to 6.5 °C, 1 °C and – 5 °C for the minimum, median and maximum heat demand scenario, 

respectively. The system does not reach a steady state condition for heat transfer during the 

25 modelled heating seasons (Figure 5) even for average or low heating loads. The spatial 

footprint of the thermally affected zone under these no-flow conditions is limited to a few 

(<10m) metres around the installed BHE systems as heat transport is dominantly conductive, 

constraint by the subsurface thermal conductivity. In the presence of groundwater flow 

(Figure 5, plots 1-3, Figure 6a), ground temperatures at individual BHEs during the heating 

season drop by up to 2.5 °C, 3.8 °C and 7.0 °C for the minimum, median and maximum heat 

demand scenario, respectively. Ground temperatures recover during the summer (no heating 

and higher surface temperatures) period, but remain below the background temperature of 12 

°C by about 1 °C, 1.8 °C and 3 °C, for minimum, median, and maximum heat demand 

scenarios, respectively. Mean annual ground temperatures (solid lines) stabilise after about 10 
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heating seasons at 11 °C (minimum HD), 10 °C (median HD) and 8.5 °C (maximum HD), 

suggesting that the system has reached a seasonal equilibrium or dynamic balance, even for 

high heat demands. The thermally affected zone around the BHE field is markedly dispersed 

in the direction of groundwater flow, extending to the northern model boundary, which 

represents the River Thames located ca 100m north/north east and down-gradient of the site. 

Temperature reductions along the river of up to 0.8 ºC, 1.6 ºC and 2.6 ºC (for the minimum, 

median and maximum HD scenarios) highlight the potential impact that the modelled BHE 

schemes could have on nearby energy installations or heat-sensitive (eco)systems. 

System efficiency is assessed via the Seasonal Performance Factors (SPF), which, in 

this study, is calculated from the coefficient of performance (COP) of the heat pump 

averaged over the heating season (Singh et al. 2019). The SPF reduces approximately by 

about 0.1 for every 1 C reduction in ground temperatures, hence higher reductions in 

efficiency in Figure 6b are associated with higher overall heating loads – as would be 

expected.  

Table 3: Comparison of energy consumption under different operational and interference scenarios 

 

Scenarios 
Average annual 

consumption (MWh/year)  

 

 
All systems  

Single 

system 

(mean) 

Change 

relative to 

reference case 

Reference case 

HD =median; GW gradient = 

0.005;  Transmissivity = 500 m
2
 

d
-1; 

Darcy flux = 2.9x10
-7

 m s
-1

; 

GW temp = 12 ºC, 
 

   
396 6.8 - 

   

Heat extraction 
low HD 200 3.5 49% 

high HD 680 11.7 -72% 

Thermal interference 

between systems within 

field 

    
Difference between most and 

least efficient scheme in field  
0.32 -5% 

    

Thermal interference 

with external system 

2 ºC increase in gw temperature 369 6.4 7% 

1 ºC reduction in gw 

temperature 
411 7.1 -4% 

2 ºC reduction in gw 

temperature 
426 7.3 -8% 

Transmissivity/ Darcy 

flux 

250 m
2
 d

-1
 / 1.5x10

-7
 m s

-1
 415 7.2 -5% 

750 m
2
 d

-1
 / 4.4x10

-7
 m s

-1 *
 387 6.7 2% 
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 Efficiency reductions result in rising energy consumption (Figure 6c), and these were 

used to compare the impact of different operational and interference scenarios (Table 3). In 

the presence of groundwater flow, for the median HD scenario, the SPF stabilises at an 

average value of 2.75 and an energy consumption of 396 MWh/year for the entire BHE field 

(or an average of 6.8 MWh year
-1

 per system). Corresponding CO2 emissions are 138 t CO2 

year
-1 

per BHE field (and 2.4 t CO2 year
-1

 per system), assuming a conversion factor of 0.35 

kg CO2 per kWh electricity (BEIS 2017a). Within each HD scenario, consumption of 

individual systems varies depending on their position within the borehole field, with 

differences of 3 %, 5 % and 9 % in daily consumption between the least and the most 

efficient systems at low, median and high HD, respectively. In the absence of groundwater 

flow, as ground temperatures continue to decline, there is a dramatic decline in efficiency and 

an associated rise in energy consumption. After 25 years, the annual energy consumption of 

the BHE field is 533 MWh year
-1

 with corresponding CO2 emissions of 187 t CO2 year
-1

 (3.2 

t CO2 year
-1

 per system). For comparison, generating the equivalent amount of heating energy 

using gas-boilers would produce a total of  273 t CO2 year
-1

 (or 4.7 t CO2 year
-1

 per system), 

assuming a boiler efficiency of 80 % (BEIS 2017b) and a conversion factor of 0.2 kg CO2 per 

kWh for natural gas (BEIS 2017a). These CO2 emissions are considerably (46-98 %) higher 

than those produced by the BHE field even under sub-optimal conditions, i.e. in the absence 

of groundwater flow.  

The potential impact of interference with other nearby installations on system 

efficiency was assessed for the median HD by simulating a decrease in groundwater 

1000 m
2
 d

-1
 / 5.8x10

-7
 m s

-1
 383 6.6 3% 

GW gradient / Darcy flux 

0.0025 m m
-1

  / 1.5x10
-7

 m s
-1

 417 7.2 -5% 

0.001 m m
-1

  / 5.8x10
-8

 m s
-1

 447 7.7 -13% 

0 m m
-1

  / 0  m s
-1

 485 8.4 -22% 

0 m m
-1

 / 0  m s
-1

 533
**

 9.2
**

 -35% 
*
 this scenario is identical to GW gradient of 0.0075 m m

-1
  (not included here) 

**
consumption during final year of operation (all other values are annual averages taken over the 25 year 

operational period) 
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temperatures of 1-2 ºC, which can be expected from the operation of a similar scheme 100-

200 m upstream of the site. The results indicate reductions in system efficiency of 4-8% and 

an overall increase in CO2 emissions of 5-10 t CO2 year
-1

 (0.09 – 1.8 t CO2 year
-1

 per 

system).  

 Model sensitivity (Figure S2) is mostly associated with the hydraulic head gradient 

dl/dh, thermal loads LH to the ground (i.e. heat demand) and aquifer transmissivity T.  The 

importance of correctly estimating heat loads to the subsurface are obvious. High model 

sensitivities at low transmissivities (T < 500 m
2
 d

-1
) and low hydraulic gradients (dl/dh  < 

0.005 m m
-1

) can also be expected due to the decreasing effect of advection at lower 

groundwater flow velocities resulting in reduced dissipation of heat and hence larger 

temperature increases in response to heating loads. Thermal Peclet numbers Pe
t
 were 

calculated after Bear (1972) for the Darcy fluxes listed in Table 3 to assess to influence of 

advection on heat transport for the different transmissivity/ hydraulic head gradient settings.  

Peclet number Pe
t
  were > 1 in all cases, except where dl/dh= 0 m m

-1
 (no groundwater flow), 

suggesting that advection of heat by flowing groundwater is a significant process contributing 

to heat transfer in the ground (Chiasson et al. 2000).  

Other parameters that impact ground temperatures at the BHE are longitudinal (αx) 

and transverse (αy) dispersivity, as demonstrated in more detail by other modelling studies 

(Molina-Giraldo et al. 2011a; Pophillat et al. 2020; Piga et al. 2017). Model outputs are 

relatively insensitive to thermal conductivity values, which controls conductive heat transport 

(Liuzzo-Scorpo et al., 2015), again confirming the dominance of advective (rather than 

conductive) heat transport within the modelled systems.  

 

Discussion  
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An initial heat balance estimate for a single GCHP over one year for the median heat 

load scenarios suggests that, in the absence of groundwater flow, heat abstraction at the 

proposed rate is not sustainable in the long term, not even for a single system. The modelling 

confirms this and highlights that sustainability and system efficiency over the anticipated 

operational lifespan is largely controlled by the presence of groundwater flow. Ground 

temperature recovered during summer month (no heating) to near background levels, which 

was enhanced by groundwater flow (where present). The pattern of seasonal thermal 

perturbance followed by a recovery phase is typical for many small-scale, residential GSHP 

systems in the UK which are predominantly unbalanced systems catering for domestic 

heating. Larger-scale installations predominately serve cooling demands for commercial 

buildings, although a trend towards balancing ground loads in these larger systems is 

increasingly observable (see examples in Singh et al. 2019). Where installed in close 

proximity, thermal interference between neighbouring systems is unavoidable, especially in 

the presence of groundwater flow – which enlarges the thermally affected area in the 

direction of flow. While groundwater flow increases efficiency for individual systems within 

the BHE field, it enhances the risk of thermal interferences from the combined thermal loads 

with schemes located downstream of the BHE field. The impact on system efficiency can be 

considerable. Temperature changes of 2 ºC, as observed in this model at distances of 200 m 

downstream of the scheme, can cause  efficiency reductions of 8 % compared to only 5 % 

caused by within-field interactions.  

Although efficiency reductions lead to an increase in CO2 emissions, and are therefore 

undesirable and should be minimised, it is interesting to observe that overall CO2 emissions 

of the simulated systems after 25 years of operation remain below those that would have been 

produced if gas boilers had been used to provide the heating. This applies even for scenarios 

where groundwater flows were absent, and the systems are considered unsustainable (on the 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



basis that ground temperature continues to drop due to an imbalance in thermal extraction and 

recharge). Finally, model sensitivity has highlighted key controls on model performance, 

confirming the importance of processes linked to groundwater flow, i.e. thermal advection 

and dispersion.   

 

Modelling study III: Carignan-Salières elementary school, South of 

Montréal, Canada 

Objectives  

The objective of this third study was to (1) predict the long-term performance of an 

entire BHE field installed for a school building and affected by variable groundwater flow in 

order to (2) anticipate potential operational interference with dewatering of a nearby quarry 

and (3) evaluate the effect of groundwater flow on the thermal plume around the BHEs. To 

this purpose, a numerical model was calibrated with a large-scale heat injection test using the 

whole borefield and then simulations were run under different scenarios for a period of 

twenty years. The distribution of the thermal plume around the BHE field is newly addressed 

in this article as a complement to results given in a previous study (Jaziri et al. 2020). 

 

Description of the case study 

The Carignan-Salières elementary school is located on the south shore of the St. 

Lawrence River near Montréal, Canada, about one kilometer away from an active quarry 

which is irregularly dewatered to facilitate excavations (Figure 7). The building lies on the 

Nicolet Formation, a sedimentary rock unit belonging to the Loraine Group, which is part of 

the St. Lawrence Lowlands sedimentary basin (Brisebois and Brun 1994). The formation 

consists of sequences of silty gray shale, with interbedded sandstone, siltstone and limestone 

(Globensky 1987). Gabbro dykes, observed in the school area, are oriented EW and cut the 
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stratigraphic sequence (Feninger and Goodacre 1995; Foster and Symons 1979; Foland et al. 

1986). The direction of the groundwater flow is locally oriented toward the active quarry 

(SW) due to dewatering (Figure 7 a and b). The school building constructed in 2013 is heated 

and cooled with a GCHP system experiencing varying groundwater flow conditions.  

The GCHP system consists of 31 BHEs connected to 50 heat pumps, with net heating 

capacity from 3.62 to 44.2 kW, depending on the size of rooms to heat and cool.  The BHEs 

are 152 m deep, spaced by 6 m and made with high-density polyethylene single U-pipe (outer 

diameter 32 mm, thermal conductivity 0.39 W m
--1

K
-1

) with omega-shaped spacers. During 

the installation, the boreholes could not be sealed with thermally enhanced grout made of 

sand and bentonite, which is commonly used in Canada to fill boreholes, because 

groundwater along the intersecting fractures flushed the fine particles from the grout mixture. 

As a consequence, boreholes were filled with olivine sand having thermal conductivity of 

1.75 W m
-1

 K
-1

 (Côté et al. 2012). The heat carrier fluid is a mixture of water and propylene 

glycol at 25 % vol. and circulates in BHE loops at a total average flow rate of 1017 m
3
 d

-1
 

(0.38 l s
-1

 in each BHE). Heating and cooling annual energy consumption of the school 

building was determined with an eQuest simulation using the DOE2.2 algorithm (Hirsch 

2004) and is 290 MWh year
-1

, with peak heating and cooling loads of 494 kW and 253 kW 

occurring in January and July, respectively. This induces significant unbalanced ground 

conditions that can affect the long-term thermal response of the system.  

 

 Initial site characterisation included two TRTs, carried out before and after the BHE 

field installation, which revealed a bulk subsurface thermal conductivity of 2.58 W m
-1

 K
-1

  

and 2.27 W m
-1

 K
-1

, respectively (Jaziri et al, 2020 and reference therein). Thermal 

conductivity values are in agreement with literature data (Bédard et al. 2017; Raymond et al. 

2019; Raymond et al. 2017); and the difference between the two tests is assumed to be due to 
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changes in groundwater flow regime near the school. Rock samples of the gabbro dykes, 

shales and calcarenite, collected from the quarries, showed an average thermal conductivity 

of 1.85, 2.64 and 3.5 W m
-1

 K
-1

, when respectively measured in the laboratory (Jaziri et al., 

2017). Hydraulic conductivity and recharge were assessed by reproducing the hydraulic head 

measured in the abandoned quarry (h) considered as an observation point and using an 

analytical solution for steady-state flow in an unconfined aquifer (Fetter 2001). The 

conditions that best match the observation point (h = 20.7 m a.s.l.) are a hydraulic 

conductivity of 1.26×10
-5

 m s
-1

 and a net recharge of 100 mm y
-1

 (Jaziri et al. 2016), both in 

agreement with the available regional groundwater flow assessment (Carrier et al. 2013). 

 

Methodology 

A large-scale heat injection test enclosing the 31 BHEs was carried out during hot 

summer days in July 2015. The test was carried out by using the cooling system at its full 

capacity for 16.9 days (305 kW total; 9.8 kW per BHE). This was achieved by opening the 

school windows during summer vacations to allow the outdoor heat to enter the building 

while it was not used. The cooling system was then stopped and the heat carrier fluid was 

kept circulating in the loop to monitor the thermal re-equilibration during an additional 13.3 

days similar to a TRT with monitoring of the recovery period. The flow rate and the 

inlet/outlet temperature of the GHE field were monitored during the whole test by means of 

flowmeters (accuracy ± 1.5 %) and temperature sensors (accuracy 0.1 ˚C) at a 30-second 

sampling interval (Figure 8 a). 

Numerical simulations were run to calibrate the FEFLOW
®
 model with data from 

large-scale heat injection test. The size of the 3D model was 500 x 500 x 300 m and  spatially 

discretized in 6 layers of 50 m each, resulting in a 195 720 triangular prismatic elements and 

114 450 nodes (Figure 7c). Before the transient simulations, the initial temperature was 
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achieved with a stationary simulation based on local geothermal gradient of 23.1 ˚C km
-1

 and 

heat flow of 35 mW m
-1

 (Nasr et al. 2018; Bédard et al. 2017; Raymond et al. 2017). Steady-

state groundwater flow in a simplified unconfined aquifer system with surface recharge was 

considered. Calibration parameters (hydraulic conductivity, porosity, thermal conductivity of 

BHE‘s grout and host rock) were adjusted manually, one at a time until the model reproduced 

the observed BHE outlet temperature with a maximum error of 2 % (Figure 8b). For 

simplicity, the geology surrounding the BHEs was assumed to be uniform with dominating 

silty gray shales and the same material properties were assigned to all the six layers: a 

hydraulic conductivity of 10
-4

 m s
-1

 in the x and y direction and in the z direction 10
-6

 m s
-1

; a 

matrix and fluid thermal conductivity of 2.4 and 0.6 W m
-1

 K
-1

, respectively, and a porosity 

of 0.03. After the calibration, the long-term performance of the BHE field was evaluated by 

means of 20-year simulations in order to predict the long-term impact of groundwater flow on 

the GCHP operation. Two different scenarios were evaluated, simulating conditions of low 

groundwater flow (Scenario 1 with a hydraulic gradient of 0.0006 m m
-1

), and high 

groundwater flow associated with dewatering activities in the quarry (Scenario 2 with a 

hydraulic gradient of  0.008 m m 
-1

). Constant hydraulic heads, with different values 

according to chosen simulation scenarios, were then imposed on the eastern and western 

boundaries of the model. The bottom surface was set as an impermeable (no flow) boundary, 

and an annual net recharge of 100 mm y
-1

 was imposed at the top surface (see Figure 7c). 

Lateral heat transfer boundaries were set adiabatic. Average and constant coefficients of 

performance (COP) of 4.7 and 4.1 in heating and cooling mode, respectively, were assumed 

for all the school heat pumps when calculating the ground loads to be used as inputs to the 

BHE model in FEFLOW
®
. 

 

Results 
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The 20-year simulation results conducted using the calibrated model show significant 

differences in BHE fluid temperature of the two scenarios (Figure 8c and d). Despite the 

differences, both scenarios show an adequate thermal response of the subsurface although 

ground loads are unbalanced. Lower groundwater flow (Scenario 1), which represents a case 

where pumping in the active quarry is stopped or reduced, has a clear negative impact on the 

whole system temperature. In heating mode, the BHE inlet temperature drops to -5 ºC and 

3 °C in scenarios 1 and 2, while the outlet temperature reaches 3 ºC and 7 ºC, respectively. As 

expected, Scenario 2 provides better operating temperature, and therefore better GCHP 

performance. In Scenario 1, the minimum BHE outlet temperature is adequately higher than 

the minimal operating temperature of the heat pump system recommended by the 

manufacturer (-9.62 ºC). However, the minimum inlet temperature is within 5 °C of the 

freezing point of the heat carried fluid, here –10 ºC. After one year, the thermally affected 

zone caused by cooling the building is little affected in Scenario 1, while it is markedly 

dispersed and follows the groundwater flow direction in Scenario 2 (Figure 9). Groundwater 

flow appears to have an important impact on the dispersion of the thermal plume around the 

BHE field that is at least 25 m wider in Scenario 2. Dispersion of the hot and cold front 

around the BHEs due to heat transfer enhanced by advection is believed to be the 

mechanisms responsible for better operation temperatures obtained with Scenario 2. 

Therefore, under low groundwater flow conditions, in the event that the quarry stop 

dewatering activity, care should be taken to follow the system minimum operating 

temperature during winter periods to avoid potential freezing problems at the GHE inlet.  

  

Discussion 

This case study illustrates the 20-year performance of a GCHP system with 

temperature simulations affected by dewatering activities in a nearby active quarry (less than 
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1 km from the BHE). The GCHP system of the Carignan-Salières School provides a unique 

field case with BHEs interfering with the groundwater drawdown around the quarry and 

where the local thermal and hydraulic conditions of the GCHP system have uncommonly 

been assessed at a large scale. The subsurface heat exchange capacity of the GCHP system is 

clearly enhanced by groundwater advection when the specific Darcy velocity changes from 6 

× 10
-8

 m s
-1

 (no dewatering) to 8 × 10
-7

 m s
-1

 (high dewatering). This study further evidence 

that even the lowest groundwater flow conditions expected at the site can be beneficial to 

avoid a progressive cooling of the underground over the expected life of the system due to the 

unbalanced heating and cooling loads. In a previous study, (Jaziri et al. 2016) simulated the 

operation of the GCHP system with a heat conduction approach considering an equivalent 

subsurface thermal conductivity up to 3 W m
-1

 K
-1

 and assumed affected by groundwater 

flow. The BHE operating temperature at the beginning of the simulations was similar to those 

obtained with FEFLOW
®

 and present in this paper for Scenario 1 (low groundwater flow), 

but decreased by 4 to 6 °C over the twenty-years of system operation. BHE simulations 

considering advection did not show a significant decrease of the minimum outlet temperature 

over the life of the system, even with a low groundwater flow (Figure 8), which is believed to 

be due to dispersion of heat and cold front around BHEs (Figure 9). The fact that low 

groundwater flow can help dissipate heat in the ground to help coping with unbalanced 

ground loads has important implications for GCHP system design, especially for systems 

subject to interference. 

 

Summary and conclusions 

The three case studies highlight that GCHP systems can be impacted by perturbations 

arising from subsurface activities that change the thermal and hydraulic regimes in the 

surrounding areas.  
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Changes in the thermal regime arising from additional subsurface heat loads near 

existing schemes were found to have varied impacts on system efficiency with reduction 

ranging from <1 % to 8 %. A clear difference was observed between impacts of additional 

loads on balanced (case study 1) compared to unbalanced (case study 2 and 3) systems, with 

overall efficiency reduction being much smaller for balanced schemes (<1 %) compared to 

unbalanced schemes (3-8 %) despite similar (or higher) subsurface temperature changes.  

For unbalanced systems, thermal interference is unavoidable where individual 

systems are installed in close proximity, on the order of tens of meters. However, interaction 

within the field between the individual BHE had less impact on the efficiency of individual 

systems than interaction with large heat loads from neighbouring systems, for example when 

an additional borehole field with similar heat loads is installed upstream of the existing 

systems. Such thermal interferences between GSHP systems have long been predicted (Fascì 

et al., 2019; Ferguson and Woodbury, 2007), but evidence of system interference in 

published case studies remains rare. By analysing temperatures of the pumped groundwater 

for an open-loop system in London, Herbert et al (2013) identified thermal interference that 

was attributed to operations of a nearby GCHP system. However, the source of the 

interference could not be confirmed as there are no requirements for licencing or monitoring 

of GCHPs in the UK, not even for recording their location. 

Thermal losses from near-surface infrastructure were found to result in significant 

temperature changes (up to 10 ºC) in the zone of 0-20 m below ground surface, with 

observable impacts (ΔT>1 ºC) up to a depth of 75 m. While such temperature increases can 

be expected to benefit the performance of a heating-only system, it had only a minor impact 

(+2.2 % increase) on the efficiency of the balanced system.  

Changes in hydrogeological regime were confirmed as the main control on GCHP 

performance in all three studies. Even small groundwater flows were found to improve the 
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performance of the system overall, and vice versa: small reductions in groundwater flow 

reduced system efficiencies by a considerable margin. This is especially true in the case of 

unbalance ground loads where groundwater flow can decrease the temperature effect of the 

unbalance loads as shown in case study 2 and 3.  

The effects of groundwater flow on the design and performance of GCHP systems has 

been demonstrated by various analytical and numerical modelling studies (Diao et al. 2004; 

Molina-Giraldo et al. 2011b; Chiasson et al. 2000). However, it is difficult to have well-

documented field cases with calibrated models to show the groundwater impact of BHE 

fields. The current study offers such field cases confirming that advection is important to 

consider in the system design, especially where Darcy fluxes of greater than 1×10 7 m s
-1

 are 

expected (Dehkordi and Schincariol, 2014; Ferguson, 2015).  

The modelling highlights the importance of considering subsurface activities that can 

change subsurface groundwater flows in the design and operation of BHEs as they have 

potential to impact on the efficiency of nearby GCHP systems. This is particularly evident in 

case study 3 where quarry dewatering activities (at ca 1-km distance from the study site) 

showed a clear interaction with GCHP‘s operating temperatures and system efficiency, 

through influencing groundwater gradients and hence flow rates. A ~13 % difference in 

thermal conductivity was obtained from two thermal response tests (TRT) at the site which is 

attributed to changes in groundwater flow related to dewatering activities. In-situ 

measurements of thermal conductivity using TRTs (Raymond et al., 2011b) are now widely 

recommended as part of the design process (e.g. GSHPA 2017), but this study demonstrates 

that these need to be considered within context of groundwater flow conditions at the time of 

the test to ensure accurate sizing of the BHE installation. The school system of case study 3 

was designed for subsurface conditions with active dewatering and can obviously experience 

decreasing performances if the quarry is shut down and the dewatering is stopped.  
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Understanding the thermal conductivity regime of a given site under varying flow conditions 

should be a priority for GCHP design, specifically where groundwater flows are expected to 

vary. Modelling studies can help to evaluate the impact of changing thermal and groundwater 

flow conditions on the BHE operating temperature and need to be systematically considered 

for GCHP design. 

While groundwater resources are regulated in most countries, thermal abstractions/ 

discharges to the subsurface are largely unregulated, although approaches for the regulations 

of GSHPs vary greatly between different countries (Tsagarakis et al. 2020; Haehnlein et al. 

2010; Dehkordi and Schincariol 2014b; García-Gil and Moreno 2020). The modelling studies 

presented here support the argument in favour of regulation to, as a minimum, register GCHP 

systems with records of locations and approximate heat pump capacity – even though these 

systems do not abstract / inject groundwater. Additional regulation can be put in place to 

ensure the subsurface thermal equilibrium is maintained around the properties with GCHP 

systems using a threshold temperature yet to be defined. This is currently not the case in the 

UK or in Canada, even for large systems with high heating / cooling loads. As others have 

pointed out (Herbert et al. 2013), this poses is increasing risk for inference problems as 

numbers of installation increase in densely-populated areas. 

More comprehensive data on the actual system location as well as their cumulative 

heating and cooling loads is also required if the underground thermal resource is to be 

managed sustainability. In some countries, this may require the designation of heat as a 

natural resource in order to legislate its use (Abesser et al. 2018). The management of the 

subsurface thermal resource requires some assessment of where systems should be deployed 

and how. In the city of Zürich, for example, active regeneration of the underground thermal 

resource is mandatory for GCHP systems in areas of high-density GCHP deployment (Knüsel 

2015; Stadt Zürich 2014). Various tools and approaches have been developed for assessing 
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and managing subsurface thermal resource (García-Gil et al. 2020a, 2020b; (Epting et al. 

2013), but operational subsurface temperature data are rarely available for calibration and 

validation of such models - although exceptions exist (e.g. Zaragoza, Basel - Epting et al. 

2017a). The temperature monitoring during the heat injection test for case study 3 was done 

in the scope of a research project to anticipate GCHP operational problems but is certainly 

not a requirement in Canada.   

 

Acknowledgements  

The authors would like to thank the three anonymous reviewers whose comments and 

suggestions helped improve and clarify this manuscript. Case study 1 (Figures 1-3) was 

funded by the Natural Sciences and Engineering Research Council (NSERC) Discovery grant 

awarded to Robert Schincariol. Case study 2 (Figures 4-6) was funded by the Natural 

Environment Research Council (NERC) through Science Budget funding to the British 

Geological Survey (UKRI). The authors publish with the permission of the Executive 

Director of the British Geological Survey (UKRI). Case study 3 (Figures 7-9) was funded by 

a scholarship given to Nehed Jaziri from the Fonds de recherche du Québec – nature et 

technologies, the Natural Sciences and Engineering Research Council (NSERC) and the 

company GBi, as well as an NSERC Discovery grant awarded to Jasmin Raymond. 

 

Supporting Information 

Additional Supporting Information may be found in the online version of this article: 

Table S1. BHE model specifications 

Table S2. Average monthly inlet temperatures 

Table S3. Parameter values used for heat demand calculation, heat pump design and heat 

transport modelling 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Figure S1. Temperature vs depth profile of the UWO monitoring wells compared to 

simulated temperatures.  

Figure S2. Cumulative time curves of the normalised sensitivity coefficient for selected 

model input parameters 

Please note: ―Supporting Information‖ is generally not peer reviewed. Wiley is not 

responsible for the content or functionality of any supporting information supplied by the 

authors.  Any queries (other than missing materials) should be directed to the corresponding 

author. 

 

References 

Abesser, C., F. Ciocca, J. Findlay, D. Hannah, P. Blaen, A. Chalari, M. Mondanos, and S. 

Krause. 2020. A distributed heat pulse sensor network for thermo-hydraulic 

monitoring of the soil subsurface. Quarterly Journal of Engineering Geology and 

Hydrogeology. 

Abesser, C., D.I. Schofield, J. Busby, H. Bonsor, and R. Ward. 2018. Who owns geothermal 

heat? . BGS Science Briefing paper, 

http://nora.nerc.ac.uk/id/eprint/523369/1/whoOwnsGeothermalHeat.pdf. 

Al-Khoury, R., and P.G. Bonnier. 2006. Efficient finite element formulation for geothermal 

heating systems. Part II: transient. International Journal for Numerical Methods in 

Engineering 67 no. 5: 725-745. 

Al-Khoury, R., P.G. Bonnier, and R.B.J. Brinkgreve. 2005. Efficient finite element 

formulation for geothermal heating systems. Part I: steady state. International Journal 

for Numerical Methods in Engineering 63 no. 7: 988-1013. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Allen, D.J., L.J. Brewerton, L.M. Coleby, B.R. Gibbs, M.A. Lewis, A.M. MacDonald, S.J. 

Wagstaff, and A.T. Williams. 1997. The physical properties of major aquifers in 

England and Wales. British Geological Survey WD/97/34. 

Armstrong, D.K., and T.R. Carter. 2010. The subsurface Paleozoic stratigraphy of southern 

Ontario. Ontario Geological Survey Special Volume 7. 

Banks, D. 2008. An introduction to Thermogeology-Ground Source Heating and Cooling. 

Oxford: Blackwell Publishing. 

Banks, D. 2012. An introduction to Thermogeology-Ground Source Heating and Cooling, 

2nd edition. 2nd edition ed. Oxford: Wiley-Blackwell. 

Banks, D., C.J. Gandy, P.L. Younger, J. Withers, and C. Underwood. 2009. Anthropogenic 

thermogeological ‗anomaly‘ in Gateshead, Tyne and Wear, UK. Quarterly Journal of 

Engineering Geology and Hydrogeology 42 no. 3: 307-312. 

Bear, J. 1972. Dynamics of Fluids in Porous Media. New York: Dover Publications Inc. 

Bédard, K., F.-A. Comeau, J. Raymond, M. Malo, and M. Nasr. 2017. Geothermal 

characterization of the St. Lawrence Lowlands sedimentary basin, Québec, Canada. 

Natural Resources Research 27 no. 4: 479-502. 

BEIS. 2017a. Greenhouse gas reporting: Conversion factors 2017. Department for Business, 

Energy & Industrial Strategy. 

BEIS. 2017b. National Statistics: Energy Consumption in the UK (ECUK) 2017. Department 

for Business, Energy & Industrial Strategy. 

Bidarmaghz, A., R. Choudhary, K. Soga, H. Kessler, R.L. Terrington, and S. Thorpe. 2019. 

Influence of geology and hydrogeology on heat rejection from residential basements 

in urban areas. Tunnelling and Underground Space Technology 92: 103068. 

Bidarmaghz, A., R. Choudhary, K. Soga, R.L. Terrington, H. Kessler, and S. Thorpe. 2020. 

Large-scale urban underground hydro-thermal modelling – A case study of the Royal 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Borough of Kensington and Chelsea, London. Science of The Total Environment 700: 

134955. 

Bloomfield, J. 1996. Characterisation of hydrogeologically significant fracture distributions 

in the Chalk: an example from the Upper Chalk of southern England. Journal of 

Hydrology 184 no. 3: 355-379. 

Bozdağ, Ş., B. Turgut, H. Paksoy, D. Dikici, M. Mazman, and H. Evliya. 2008. Ground water 

level influence on thermal response test in Adana, Turkey. International Journal of 

Energy Research 32 no. 7: 629-633. 

Brisebois, D., and J. Brun. 1994. La plate-forme du Saint-Laurent et les Appalaches. In 

Géologie du Québec, MM 94-01, ed. M. d. R. naturelles, 95-120. 

Carrier, M.A., R. Lefebvre, C. Rivard, M. Parent, J.M. Ballard, H. Vigneault, and H. . 2013. 

Portrait des ressources en eau souterraine en Montérégie Est, Québec, Canada. Institut 

national de la recherche scientifique, Québec Internal report, R-1433,. 

Casasso, A., and R. Sethi. 2014. Efficiency of closed loop geothermal heat pumps: A 

sensitivity analysis. Renewable Energy 62 no. Supplement C: 737-746. 

Chiasson, A.D., S.J. Rees, and J.D. Spitler. 2000. A preliminary assessment of the effects of 

groundwater flow on closed-loop ground source heat pump systems. In Proceedings 

of Conference: ASHRAE Winter Meeting, Dallas, TX (US), 02/05/2000--02/09/2000, 

380-393. 

Committee on Climate Change. 2017. Meeting Carbon Budgets: Closing the policy gap, 2017 

Report to Parliament, London, UK. https://www.theccc.org.uk/publication/2017-

report-to-parliament-meeting-carbon-budgets-closing-the-policy-gap/.  

Côté, J., V. Masoumifard, and E. Noreau. 2012. Optimizing the thermal conductivity of 

alternative geothermal grouts. In Proceedings of 65th Canadian Geotechnical 

Conference, Winnipeg. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Dehkordi, S.E., and R.A. Schincariol. 2014. Effect of thermal-hydrogeological and borehole 

heat exchanger properties on performance and impact of vertical closed-loop 

geothermal heat pump systems. Hydrogeology Journal 22 no. 1: 189-203. 

Diao, N., Q. Li, and Z. Fang. 2004. Heat transfer in ground heat exchangers with 

groundwater advection. International Journal of Thermal Sciences 43 no. 12: 1203-

1211. 

Diersch, H., D. Bauer, W. Heidemann, W. Rühaak, and P. Schätzl. 2011. Finite element 

modelling of borehole heat exchanger systems, Part 2 Numerical simulation. 

Computers & Geosciences 38 no. 8: 1136 - 1147. 

Diersch, H.J.G., D. Bauer, W. Heidemann, W. Rühaak, and P. Schätzl. 2010. Finite element 

formulation for borehole heat exchangers in modeling geothermal heating systems by 

FEFLOW. WASY Software FEFLOW White Paper 5: 5-96. 

Dowling, C.B., K. Neumann, and L.J. Florea (Eds). 2016. Geothermal Energy: An Important 

Resource. Geological Society of America Special Paper 519, 144 pages, Boulder: 

Geological Society of America. ISBN: 978-0-8137-2519-2.  

Emery, A.F., D.R. Heerwagen, C.J. Kippenhan, and D.E. Steele. 2007. Measured and 

Predicted Thermal Performance of a Residential Basement. HVAC&R Research 13 

no. 1: 39-57. 

Epting, J., A. García-Gil, P. Huggenberger, E. Vázquez-Suñe, and M.H. Mueller. 2017a. 

Development of concepts for the management of thermal resources in urban areas – 

Assessment of transferability from the Basel (Switzerland) and Zaragoza (Spain) case 

studies. Journal of Hydrology 548: 697-715. 

Epting, J., F. Händel, and P. Huggenberger. 2013. Thermal management of an unconsolidated 

shallow urban groundwater body. Hydrology and Earth System Sciences. 17 no. 5: 

1851-1869. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Epting, J., S. Scheidler, A. Affolter, P. Borer, M.H. Mueller, L. Egli, A. García-Gil, and P. 

Huggenberger. 2017b. The thermal impact of subsurface building structures on urban 

groundwater resources – A paradigmatic example. Science of The Total Environment 

596-597: 87-96. 

Eskilson, P., and J. Claesson. 1988. Simulation model for thermal interacting heat extraction 

boreholes. Numerical Heat Transfer 13 no. 2: 149-165. 

Farr, G.J., A.M. Patton, D.P. Boon, D.R. James, B. Williams, and D.I. Schofield. 2017. 

Mapping shallow urban groundwater temperatures, a case study from Cardiff, UK. 

Quarterly Journal of Engineering Geology and Hydrogeology 50 no. 2: 187-198. 

Feninger, T., and A.K. Goodacre. 1995. The eight classical monteregian hills at depth and the 

mechanism of their intrusion. Canadian Journal of Earth Sciences 32 no. 9: 1350 - 

1364. 

Ferguson, G. 2015. Screening for heat transport by groundwater in closed geothermal 

systems. Groundwater 53 no. 3: 503-506. 

Ferguson, G., and A.D. Woodbury. 2004. Subsurface heat flow in an urban environment. 

Journal of Geophysical Research 109. 

Ferguson, G., and A.D. Woodbury. 2005. Thermal sustainability of groundwater-source 

cooling in Winnipeg, Manitoba. Canadian Geotechnical Journal 42: 1290-1301. 

Fetter, C.W. 2001. Applied Hydrogeology. 4
th

 Edition. Upper Saddle River: Prentice Hall. 

Florea, L.J., D. Hart, J. Tinjum, and C. Choi. 2017. Potential Impacts to Groundwater from 

Ground-Coupled Geothermal Heat Pumps in District Scale. Groundwater 55 no. 1: 8-

9. 

Foland, K., L.A. Gilbert, C.A. Sebring, and C. Jiang-Feng. 1986. 40Ar/39Ar ages for plutons 

of the Monteregian Hills, Quebec: evidence for a single episode of Cretaceous 

magmatism. Geological Society of America Bulletin 97 no. 8: 966-974. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Foster, J., and D. Symons. 1979. Defining a paleomagnetic polarity pattern in the 

Monteregian intrusives. Canadian Journal of Earth Sciences 16 no. 9: 1716 - 1725. 

Fujii, H., R. Itoi, J. Fujii, and Y. Uchida. 2005. Optimizing the design of large-scale ground-

coupled heat pump systems using groundwater and heat transport modeling. 

Geothermics 34 no. 3: 347-364. 

Globensky, Y. 1987. Géologie des Basses-Terres du Saint-Laurent. Ministère de l‘Énergie et 

des Ressources du Québec, . 

GSHPA. 2017. GSHVBS Vertical Borehole Standard. UK Ground Source Heat Pump 

Association, London, UK, 

https://www.gshp.org.uk/GSHPA_Vertical_Borehole_Standard.html.  

Gupta, A., and A. Singh Bais 2018. Geothermal Heat Pump Market Statistics  - Global 

Forecast 2024,  Report ID: GMI370, Global Market Insights Inc, 

www.gminsights.com. 

Headon, J., D. Banks, A. Waters, and V.K. Robinson. 2009. Regional distribution of ground 

temperature in the Chalk aquifer of London, UK. Quarterly Journal of Engineering 

Geology 42 no. 3: 313-323. 

Hecht-Méndez, J., M. de Paly, M. Beck, and P. Bayer. 2013. Optimization of energy 

extraction for vertical closed-loop geothermal systems considering groundwater flow. 

Energy Conversion and Management 66: 1-10. 

Hein, P., O. Kolditz, U.-J. Görke, A. Bucher, and H. Shao. 2016. A numerical study on the 

sustainability and efficiency of borehole heat exchanger coupled ground source heat 

pump systems. Applied Thermal Engineering 100: 421-433. 

Hirsch, J.J. 2004. DOE-2.2 Building Energy Use and Cost Analysis Program. Volume 1: 

Basics;. Lawrence Berkeley National Laboratory: Berkeley, CA, USA. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Jaziri, N., J. Raymond, and M. Boisclair. 2016. Performance evaluation of a ground coupled 

heat pump system with a heat injection test analysis. In Proceedings of 69th Canadian 

Geotechnical Conference, Vancouver, Canada, p. 6. 

Jaziri, N., J. Raymond, N. Giordano, and J. Molson. 2020. Long-Term Temperature 

Evaluation of a Ground-Coupled Heat Pump System Subject to Groundwater Flow. 

Energies 13 no. 1: 96. 

Judge, A.S. 1972. Geothermal measurements in a sedimentary basin, unpublished Ph.D. 

thesis. University of Western Ontario, London, Ontario, Canada. 

Judge, A.S., and A.E. Beck. 1967. An anomalous heat flow layer at London, Ontario. Earth 

and Planetary Science Letters 3: 167-170. 

Knüsel, P. 2015. Erdwärmesonden im Dichtestress -  Thermische Nutzung des Untergrunds. 

TEC21 no. 9-10. 

Koubikana Pambou, C.H., J. Raymond, and L. Lamarche. 2019. Improving thermal response 

tests with wireline temperature logs to evaluate ground thermal conductivity profiles 

and groundwater fluxes. Heat and Mass Transfer 55 no. 6: 1829-1843. 

Kukkonen, I.T., V. Rath, L. Kivekäs, J. Šafanda, and V. Čermak. 2011. Geothermal studies 

of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and 

palaeoclimatic implications. Physics of the Earth and Planetary Interiors 188 no. 1: 

9-25. 

Matrix Solutions Inc. 2014. Tier three water budget and local area risk assessment, Oxford 

County, Matrix Solutions Inc., Waterloo, Ontario, Canada. 

Menberg, K., P. Bayer, K. Zosseder, S. Rumohr, and P. Blum. 2013a. Subsurface urban heat 

islands in German cities. Science of The Total Environment 442: 123-133. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Menberg, K., P. Blum, A. Schaffitel, and P. Bayer. 2013b. Long-Term Evolution of 

Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Environmental 

Science & Technology 47 no. 17: 9747-9755. 

Molina-Giraldo, N., P. Bayer, and P. Blum. 2011a. Evaluating the influence of thermal 

dispersion on temperature plumes from geothermal systems using analytical solutions. 

International Journal of Thermal Sciences 50 no. 7: 1223-1231. 

Molina-Giraldo, N., P. Blum, K. Zhu, P. Bayer, and Z. Fang. 2011b. A moving finite line 

source model to simulate borehole heat exchangers with groundwater advection. 

International Journal of Thermal Sciences 50 no. 12: 2506-2513. 

Nasr, M., J. Raymond, M. Malo, and E. Gloaguen. 2018. Geothermal potential of the St. 

Lawrence Lowlands sedimentary basin from well log analysis. Geothermics 75: 68 - 

80. 

Piga, B., A. Casasso, F. Pace, A. Godio, and R. Sethi. 2017. Thermal Impact Assessment of 

Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies 10: 

1385. 

Pollack, H.N., and S. Huang. 2000. Climate Reconstruction from Subsurface Temperatures. 

Annual Review of Earth and Planetary Sciences 28 no. 1: 339-365. 

Pophillat, W., P. Bayer, E. Teyssier, P. Blum, and G. Attard. 2020. Impact of groundwater 

heat pump systems on subsurface temperature under variable advection, conduction 

and dispersion. Geothermics 83: 101721. 

Raymond, J., K. BÉdard, F.-A. Comeau, E. Gloaguen, G. Comeau, E. Millet, and S. Foy. 

2019. A workflow for bedrock thermal conductivity map to help designing 

geothermal heat pump systems in the St. Lawrence Lowlands, Québec, Canada. 

Science and Technology for the Built Environment 25 no. 8: 963-979. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Raymond, J., C. Sirois, M. Nasr, and M. Malo. 2017. Evaluating the geothermal heat pump 

potential from a thermostratigraphic assessment of rock samples in the St. Lawrence 

Lowlands, Canada. Environmental Earth Sciences 76 no. 2: 83. 

Raymond, J., R. Therrien, L. Gosselin, and R. Lefebvre. 2011. Numerical analysis of thermal 

response tests with a groundwater flow and heat transfer model. Renewable Energy 

36: 315-324. 

Rivera, J.A., P. Blum, and P. Bayer. 2015. Analytical simulation of groundwater flow and 

land surface effects on thermal plumes of borehole heat exchangers. Applied Energy 

146: 421-433. 

Rivera, J.A., P. Blum, and P. Bayer. 2016. Influence of spatially variable ground heat flux on 

closed-loop geothermal systems: Line source model with nonhomogeneous Cauchy-

type top boundary conditions. Applied Energy 180: 572-585. 

Rivera, J.A., P. Blum, and P. Bayer. 2017. Increased ground temperatures in urban areas: 

Estimation of the technical geothermal potential. Renewable Energy 103: 388-400. 

Schlumberger. 2011. Thames-Sydenham and Region Upper Thames River Tier 2 Conceptual 

Model Report. Schlumberger Water Services (Canada) Inc. 

Schwartz, F.W. 1974. The Origin of Chemical Variations in Groundwaters from a Small 

Watershed in Southwestern Ontario. Canadian Journal of Earth Sciences 11 no. 7: 

893-904. 

Self, S.J., B.V. Reddy, and M.A. Rosen. 2013. Geothermal heat pump systems: Status review 

and comparison with other heating options. Applied Energy 101: 341-348. 

Shand, P., R. Tyler-Whittle, T. Besien, D.W. Peach, A.R. Lawrence, and M. Lewis. 2003. 

Baseline Report Series: 6. The Chalk of the Colne and Lee River Catchments. British 

Geological Survey. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Signorelli, S., S. Bassetti, D. Pahud, and T. Kohl. 2007. Numerical evaluation of thermal 

response tests. Geothermics 36 no. 2: 141-166. 

Singh, R.M., A.K. Sani, and T. Amis. 2019. 15 - An overview of ground-source heat pump 

technology. In Managing Global Warming, ed. T. M. Letcher, 455-485. Academic 

Press. 

Stadt Zürich. 2014. Erdsondenpotenzial in der Stadt Zürich - Schlussbericht. Amt für 

Hochbauten. https://www.stadt-zuerich.ch/hbd/de/index/hochbau/bauen-fuer-2000-

watt/grundlagen-studienergebnisse/archiv-studien/2014/2014-05-egt-

erdsondenpotenzial.html  

Taniguchi, M., T. Uemura, and Y. Sakura. 2005. Effects of urbanization and groundwater 

flow on subsurface temperature in three megacities in Japan. Journal of Geophysics 

and Engineering 2 no. 4: 320-325. 

Taylor, C.A., and H.G. Stefan. 2009. Shallow groundwater temperature response to climate 

change and urbanization. Journal of Hydrology 375 no. 3-4: 601-612. 

Thomas, H.R., and S.W. Rees. 1998. The thermal performance of ground floor slabs—a full 

scale in-situ experiment. Building and Environment 34 no. 2: 139-164. 

Williams, A., J. Bloomfield, K. Griffiths, and A. Butler. 2006. Characterising the vertical 

variations in hydraulic conductivity within the Chalk aquifer. Journal of Hydrology 

330 no. 1: 53-62. 

Zanchini, E., S. Lazzari, and A. Priarone. 2012. Long-term performance of large borehole 

heat exchanger fields with unbalanced seasonal loads and groundwater flow. Energy 

38 no. 1: 66-77. 

Zhu, K., L. Fang, N. Diao, and Z. Fang. 2017. Potential underground environmental risk 

caused by GSHP systems. Procedia Engineering 205: 1477-1483. 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Figure captions 

Figure 1: Site conditions showing locations of BHEs (A, B), horizontal loop fields, 

infrastructure and ground conditions, and model lateral boundaries. 

 Figure 2. Difference plot comparing the temperature between the infrastructure and 

no infrastructure models prior to BHE activation. 

Figure 3. Difference plot for 10 m spaced BHE, with upgradient 10 m space BHE 

field, comparing initial conditions to 5 years of operation (upper image) and 20 years of 

operation (lower image). 

Figure 4 : Location (a), bedrock  and superficial geology (b), finite element model 

mesh and flow boundary conditions for groundwater flow (blue text) and heat transport (red 

text) (c) of the study area (Contains Digital geological data, British Geological Survey 

©UKRI. Contains Ordnance Data © Crown Copyright and database rights [2017]. Ordnance 

Survey Licence no. 100021290). 

Figure 5:  Time series of seasonal variations (dashed lines) and annual mean (solid 

lines) of average ground temperatures within the BHE field for different heat demand (HD) 

scenarios in the presence of groundwater flow (lines 1-3) and the median heat demand 

scenario in the absence of groundwater flow (line 4). 

Figure 6:  Cumulative time curves of (a) ground temperatures, (b) heat pump 

performance (SPF) and (c) daily energy consumption for the different heat demand scenarios. 

Figure 7 (a) Location of the study site with hydraulic boundary conditions (h1 and 

h2); (b) conceptual geological model; (c) 3D numerical model showing the boundary 

conditions and initial temperature for each layer (Redrawn from Jaziri et al., 2020). 

Figure 8 (a) Large-scale heat injection test conducted on the whole borefield with the 

full system; (b) Match between measured and simulated BHE outlet temperature for the 

model calibration; (c) BHE temperature simulation for 20-year according to Scenario 1 (low 
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groundwater flow) and; (d) Scenario 2 (high groundwater flow). The start of the simulation 

time is in September 2013, when the BHE system was put in operation (Redrawn from Jaziri 

et al., 2020). 

Figure 9: Plan view of one-year underground thermal perturbation at the peak of the 

cooling season (July) for simulation cases with a low (Scenario 1) and high hydraulic 

gradient expected locally (Scenario 2). 
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