64 research outputs found

    Costly choices for treating Wilson's disease

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110871/1/hep27663.pd

    Prevalence of hepatic iron overload and association with hepatocellular cancer in end-stage liver disease: results from the National Hemochromatosis Transplant Registry

    Full text link
    Background : It is unclear whether mild to moderate iron overload in liver diseases other than hereditary haemochromatosis (HH) contributes to hepatocellular carcinoma. This study examined the association between hepatic iron grade and hepatocellular carcinoma in patients with end-stage liver disease of diverse aetiologies. Methods : The prevalence of hepatic iron overload and hepatocellular carcinoma was examined in 5224 patients undergoing liver transplantation. Explant pathology reports were reviewed for the underlying pathological diagnosis, presence of hepatocellular carcinoma and degree of iron staining. The distribution of categorical variables was studied using Χ 2 tests. Results : Both iron overload and hepatocellular carcinoma were the least common with biliary cirrhosis (1.8 and 2.8% respectively). Hepatocellular carcinoma was the most common in patients with hepatitis B (16.7%), followed by those with hepatitis C (15.1%) and HH (14.9%). In the overall cohort, any iron overload was significantly associated with hepatocellular carcinoma ( P =0.001), even after adjustment for the underlying aetiology of liver disease. The association between hepatic iron content and hepatocellular carcinoma was the strongest in patients with biliary cirrhosis ( P <0.001) and hepatitis C ( P <0.001). Conclusions : Iron overload is associated with hepatocellular carcinoma in patients with end-stage liver disease, suggesting a possible carcinogenic or cocarcinogenic role for iron in chronic liver disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75573/1/j.1478-3231.2007.01596.x.pd

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Advances in liver transplantation allocation systems

    No full text
    corecore