253 research outputs found

    Power to Comment on the Issue of Guilt: Trial by Jury or Trial by Judge

    Get PDF

    Power to Comment on the Issue of Guilt: Trial by Jury or Trial by Judge

    Get PDF

    Lorentz transformations of open systems

    Get PDF
    We consider open dynamical systems, subject to external interventions by agents that are not completely described by the theory (classical or quantal). These interventions are localized in regions that are relatively spacelike. Under these circumstances, no relativistic transformation law exists that relates the descriptions of the physical system by observers in relative motion. Still, physical laws are the same in all Lorentz frames.Comment: Final version submitted to J. Mod. Opt. (Proc. of Gdansk conference

    Compressing the hidden variable space of a qubit

    Full text link
    In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of a single realization is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with the quantum states satisfy reasonable criteria of regularity. Possible generalizations of this shrinking to a N-dimensional Hilbert space are discussed.Comment: References updated and added some more discussions of result

    Immanence in Physics

    Get PDF
    In this article, the conceptual history of space in physics will be presented in the context of transcendent and immanent concepts. In short, transcendent concepts postulate space as an ambient super-structure to organize material objects, while in immanent concepts space does not exist apart from objects but emerges through their relations. In this analysis it becomes apparent that transcendent characterizations of space have been dominant in physics during the past centuries, while immanent conceptions of space have come to the fore only since the development of the general theory of relativity. The importance of immanence in physics besides relativity is still lacking. In contrast to the classical framework of absolute and relative accounts of space, the notions of transcendence and immanence allow for a complementary conception of space which combines elements of both

    General Relativity As an Aether Theory

    Full text link
    Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shall use a combination of Lorentz's and Kelvin's conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvin's aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann

    From Einstein's Theorem to Bell's Theorem: A History of Quantum Nonlocality

    Full text link
    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to popular opinion, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality-locality-completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality-locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full nonlocality of the quantum world for the first time.Comment: 18 pages. To be published in Contemporary Physics. (Minor changes; references and author info added

    On Locality in Quantum General Relativity and Quantum Gravity

    Get PDF
    The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence principle and the path-integral formulation of quantum propagation, quantum-geometric locality leads in a natural manner to the formulation of quantum-geometric propagation in curved spacetime. Its extrapolation to geometric quantum gravity formulated over quantum spacetime is described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may be reached at: [email protected] To appear in Found. Phys. vol. 27, 199
    • ā€¦
    corecore