7,685 research outputs found

    Microscopic theory for the glass transition in a system without static correlations

    Full text link
    We study the orientational dynamics of infinitely thin hard rods of length L, with the centers-of-mass fixed on a simple cubic lattice with lattice constant a.We approximate the influence of the surrounding rods onto dynamics of a pair of rods by introducing an effective rotational diffusion constant D(l),l=L/a. We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a time-dependent torque-torque correlator of an isolated pair of rods. A glass transition occurs at l_c, if v(l_c)=1. We present a variational and a numerically exact evaluation of v(l).Close to l_c the diffusion constant decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a glass transition in the absence of any static correlations, in contrast to present form of mode coupling theory.Comment: 6 pages, 3 figure

    Pressure-Induced Superconductivity in Sc to 74 GPa

    Full text link
    Using a diamond anvil cell with nearly hydrostatic helium pressure medium we have significantly extended the superconducting phase diagram Tc(P) of Sc, the lightest of all transition metals. We find that superconductivity is induced in Sc under pressure, Tc increasing monotonically to 8.2 K at 74.2 GPa. The Tc(P) dependences of the trivalent d-electron metals Sc, Y, La, and Lu are compared and discussed within a simple s-d charge transfer framework.Comment: to be published in Phys. Rev. B (Brief Reports

    Microscopic theory of glassy dynamics and glass transition for molecular crystals

    Full text link
    We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have vanishing l,l'=0 components. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc-lattice. Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated due to precursors of orientational order which depend on X and p, the aspect ratio and packing fraction of the ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7 and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity parameters in reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while for prolate ellipsoids with 2 <~ X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity parameters are not restricted to positive values and show similar behavior. For 0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost identical to the final paper version. It includes, compared to former versions v2/v3, no new physical content, but only some corrected formulas in the appendices and corrected typos in text. In comparison to version v1, in v2-v4 some new results have been included and text has been change

    Asymptotic energy profile of a wavepacket in disordered chains

    Get PDF
    We investigate the long time behavior of a wavepacket initially localized at a single site n0n_0 in translationally invariant harmonic and anharmonic chains with random interactions. In the harmonic case, the energy profile <en(t)>ˉ \bar{< e_n(t)>} averaged on time and disorder decays for large nn0|n-n_0| as a power law ˉCnn0η\bar{}\approx C|n-n_0|^{-\eta} where η=5/2\eta=5/2 and 3/2 for initial displacement and momentum excitations, respectively. The prefactor CC depends on the probability distribution of the harmonic coupling constants and diverges in the limit of weak disorder. As a consequence, the moments <mν(t)>< m_{\nu}(t)> of the energy distribution averaged with respect to disorder diverge in time as tβ(ν)t^{\beta(\nu)} for ν2\nu \geq 2, where β=ν+1η\beta=\nu+1-\eta for ν>η1\nu>\eta-1. Molecular dynamics simulations yield good agreement with these theoretical predictions. Therefore, in this system, the second moment of the wavepacket diverges as a function of time despite the wavepacket is not spreading. Thus, this only criteria often considered earlier as proving the spreading of a wave packet, cannot be considered as sufficient in any model. The anharmonic case is investigated numerically. It is found for intermediate disorder, that the tail of the energy profile becomes very close to those of the harmonic case. For weak and strong disorder, our results suggest that the crossover to the harmonic behavior occurs at much larger nn0|n-n_0| and larger time.Comment: To appear in Phys. Rev.

    Location- and observation time-dependent quantum-tunneling

    Full text link
    We investigate quantum tunneling in a translation invariant chain of particles. The particles interact harmonically with their nearest neighbors, except for one bond, which is anharmonic. It is described by a symmetric double well potential. In the first step, we show how the anharmonic coordinate can be separated from the normal modes. This yields a Lagrangian which has been used to study quantum dissipation. Elimination of the normal modes leads to a nonlocal action of Caldeira-Leggett type. If the anharmonic bond defect is in the bulk, one arrives at Ohmic damping, i.e. there is a transition of a delocalized bond state to a localized one if the elastic constant exceeds a critical value CcritC_{crit}. The latter depends on the masses of the bond defect. Superohmic damping occurs if the bond defect is in the site MM at a finite distance from one of the chain ends. If the observation time TT is smaller than a characteristic time τMM\tau_M \sim M, depending on the location M of the defect, the behavior is similar to the bulk situation. However, for TτMT \gg \tau_M tunneling is never suppressed.Comment: 17 pages, 2 figure

    Studies on the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa

    Full text link
    The dependence of the Curie temperature Tc on nearly hydrostatic pressure has been determined to 17.2 GPa for the weak itinerant ferromagnetic SrRuO3 in both polycrystalline and single-crystalline form. Tc is found to decrease under pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dTc/dP = -6.8 K/GPa. No superconductivity was found above 4 K in the pressure range 17 to 34 GPa. Room-temperature X-ray diffraction studies to 25.3 GPa reveal no structural phase transition but indicate that the average Ru-O-Ru bond angle passes through a minimum near 15 GPa. The bulk modulus and its pressure derivative were determined to be B =192(3) GPa and B' = 5.0(3), respectively. Parallel ac susceptibility studies on polycrystalline CaRuO3 at 6 and 8 GPa pressure found no evidence for either ferromagnetism or superconductivity above 4 K

    Regular-to-chaotic tunneling rates using a fictitious integrable system

    Full text link
    We derive a formula predicting dynamical tunneling rates from regular states to the chaotic sea in systems with a mixed phase space. Our approach is based on the introduction of a fictitious integrable system that resembles the regular dynamics within the island. For the standard map and other kicked systems we find agreement with numerical results for all regular states in a regime where resonance-assisted tunneling is not relevant.Comment: 4 pages, 4 figure

    Beautiful Baryons from Lattice QCD

    Full text link
    We perform a lattice study of heavy baryons, containing one (Λb\Lambda_b) or two bb-quarks (Ξb\Xi_b). Using the quenched approximation we obtain for the mass of Λb\Lambda_b MΛb=5.728±0.144±0.018GeV. M_{\Lambda_b}= 5.728 \pm 0.144 \pm 0.018 {\rm GeV}. The mass splitting between the Λb\Lambda_b and the B-meson is found to increase by about 20\% if the light quark mass is varied from the chiral limit to the strange quark mass.Comment: 11 pages, Figures obtained upon request from [email protected]
    corecore