1 research outputs found

    The effects of disorder in dimerized quantum magnets in mean field approximations

    Get PDF
    We study theoretically the effects of disorder on Bose-Einstein condensates (BEC) of bosonic triplon quasiparticles in doped dimerized quantum magnets. The condensation occurs in a strong enough magnetic field Hc, where the concentration of bosons in the random potential is sufficient to form the condensate. The effect of doping is partly modeled by delta - correlated disorder potential, which (i) leads to the uniform renormalization of the system parameters and (ii) produces disorder in the system with renormalized parameters. These approaches can explain qualitatively the available magnetization data in the Tl_(1-x)K_(x)CuCl_3 compound taken as an example. In addition to the magnetization, we found that the speed of the Bogoliubov mode has a peak as a function of doping parameter, x. No evidence of the pure Bose glass phase has been obtained in the BEC regime.Comment: Includes 19 pages, 5 figure
    corecore