7,779 research outputs found
Improved method of producing oxide-dispersion-strengthened alloys
Dispersion strengthened alloys having the required properties are produced by a process in which the refractory particles are less than 100 to 500 A thick. These are fine enough to ensure the strength characteristics without appreciable degradation of other characteristics. The alloy consists of a matrix metal and a dispersoid metal
Microscopic theory for the glass transition in a system without static correlations
We study the orientational dynamics of infinitely thin hard rods of length L,
with the centers-of-mass fixed on a simple cubic lattice with lattice constant
a.We approximate the influence of the surrounding rods onto dynamics of a pair
of rods by introducing an effective rotational diffusion constant D(l),l=L/a.
We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a
time-dependent torque-torque correlator of an isolated pair of rods. A glass
transition occurs at l_c, if v(l_c)=1. We present a variational and a
numerically exact evaluation of v(l).Close to l_c the diffusion constant
decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a
glass transition in the absence of any static correlations, in contrast to
present form of mode coupling theory.Comment: 6 pages, 3 figure
Threshhold analysis of phase locked loops
Computer technique for predicting threshold in phased locked loops with and without frequency modulatio
Microscopic theory of glassy dynamics and glass transition for molecular crystals
We derive a microscopic equation of motion for the dynamical orientational
correlators of molecular crystals. Our approach is based upon mode coupling
theory. Compared to liquids we find four main differences: (i) the memory
kernel contains Umklapp processes, (ii) besides the static two-molecule
orientational correlators one also needs the static one-molecule orientational
density as an input, where the latter is nontrivial, (iii) the static
orientational current density correlator does contribute an anisotropic,
inertia-independent part to the memory kernel, (iv) if the molecules are
assumed to be fixed on a rigid lattice, the tensorial orientational correlators
and the memory kernel have vanishing l,l'=0 components. The resulting mode
coupling equations are solved for hard ellipsoids of revolution on a rigid
sc-lattice. Using the static orientational correlators from Percus-Yevick
theory we find an ideal glass transition generated due to precursors of
orientational order which depend on X and p, the aspect ratio and packing
fraction of the ellipsoids. The glass formation of oblate ellipsoids is
enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7
and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity
parameters in reciprocal space exhibit more or less sharp maxima at the zone
center with very small values elsewhere, while for prolate ellipsoids with 2 <~
X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity
parameters are not restricted to positive values and show similar behavior. For
0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the
nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost
identical to the final paper version. It includes, compared to former
versions v2/v3, no new physical content, but only some corrected formulas in
the appendices and corrected typos in text. In comparison to version v1, in
v2-v4 some new results have been included and text has been change
The eta ' signal from partially quenched Wilson fermions
We present new results from our ongoing study of flavor singlet pseudoscalar
mesons in QCD. Our approach is based on (a) performing truncated eigenmode
expansions for the hairpin diagram and (b) incorporating the ground state
contribution for the connected meson propagator. First, we explain how the
computations can be substantially improved by even-odd preconditioning. We
extend previous results on early mass plateauing in the eta' channel of
two-flavor full QCD with degenerate sea and valence quarks to the partially
quenched situation. We find that early mass plateau formation persists in the
partially quenched situation.Comment: Lattice2002(spectrum), 3 pages, 5 figure
Saddle index properties, singular topology, and its relation to thermodynamical singularities for a phi^4 mean field model
We investigate the potential energy surface of a phi^4 model with infinite
range interactions. All stationary points can be uniquely characterized by
three real numbers $\alpha_+, alpha_0, alpha_- with alpha_+ + alpha_0 + alpha_-
= 1, provided that the interaction strength mu is smaller than a critical
value. The saddle index n_s is equal to alpha_0 and its distribution function
has a maximum at n_s^max = 1/3. The density p(e) of stationary points with
energy per particle e, as well as the Euler characteristic chi(e), are singular
at a critical energy e_c(mu), if the external field H is zero. However, e_c(mu)
\neq upsilon_c(mu), where upsilon_c(mu) is the mean potential energy per
particle at the thermodynamic phase transition point T_c. This proves that
previous claims that the topological and thermodynamic transition points
coincide is not valid, in general. Both types of singularities disappear for H
\neq 0. The average saddle index bar{n}_s as function of e decreases
monotonically with e and vanishes at the ground state energy, only. In
contrast, the saddle index n_s as function of the average energy bar{e}(n_s) is
given by n_s(bar{e}) = 1+4bar{e} (for H=0) that vanishes at bar{e} = -1/4 >
upsilon_0, the ground state energy.Comment: 9 PR pages, 6 figure
Response of mouse epidermal cells to single doses of heavy-particles
The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions
Pressure-Induced Superconductivity in Sc to 74 GPa
Using a diamond anvil cell with nearly hydrostatic helium pressure medium we
have significantly extended the superconducting phase diagram Tc(P) of Sc, the
lightest of all transition metals. We find that superconductivity is induced in
Sc under pressure, Tc increasing monotonically to 8.2 K at 74.2 GPa. The Tc(P)
dependences of the trivalent d-electron metals Sc, Y, La, and Lu are compared
and discussed within a simple s-d charge transfer framework.Comment: to be published in Phys. Rev. B (Brief Reports
Anomalous He-Gas High-Pressure Studies on Superconducting LaO1-xFxFeAs
AC susceptibility measurements have been carried out on superconducting
LaO1-xFxFeAs for x=0.07 and 0.14 under He-gas pressures to about 0.8 GPa. Not
only do the measured values of dTc/dP differ substantially from those obtained
in previous studies using other pressure media, but the Tc(P) dependences
observed depend on the detailed pressure/temperature history of the sample. A
sizeable sensitivity of Tc(P) to shear stresses provides a possible
explanation
- …