3,950 research outputs found

    Unified description of correlations in double quantum dots

    Full text link
    The two-level model for a double quantum dot coupled to two leads, which is ubiquitously used to describe charge oscillations, transmission-phase lapses and correlation-induced resonances, is considered in its general form. The model features arbitrary tunnelling matrix elements among the two levels and the leads and between the levels themselves (including the effect of Aharonov-Bohm fluxes), as well as inter-level repulsive interactions. We show that this model is exactly mapped onto a generalized Anderson model of a single impurity, where the electrons acquire a pseudo-spin degree of freedom, which is conserved by the tunnelling but not within the dot. Focusing on the local-moment regime where the dot is singly occupied, we show that the effective low-energy Hamiltonian is that of the anisotropic Kondo model in the presence of a tilted magnetic field. For moderate values of the (renormalized) field, the Bethe ansatz solution of the isotropic Kondo model allows us to derive accurate expressions for the dot occupation numbers, and henceforth its zero-temperature transmission. Our results are in excellent agreement with those obtained from the Bethe ansatz for the isotropic Anderson model, and with the functional and numerical renormalization-group calculations of Meden and Marquardt [Phys. Rev. Lett. 96, 146801 (2006)], which are valid for the general anisotropic case. In addition we present highly accurate estimates for the validity of the Schrieffer-Wolff transformation (which maps the Anderson Hamiltonian onto the low-energy Kondo model) at both the high- and low-magnetic field limits. Perhaps most importantly, we provide a single coherent picture for the host of phenomena to which this model has been applied.Comment: 23 pages, 7 figure

    Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films

    Full text link
    We present calculations for the temperature-dependent electronic structure and magnetic properties of thin ferromagnetic EuO films. The treatment is based on a combination of a multiband-Kondo lattice model with first-principles TB-LMTO band structure calculations. The method avoids the problem of double-counting of relevant interactions and takes into account the correct symmetry of the atomic orbitals. We discuss the temperature-dependent electronic structures of EuO(100) films in terms of quasiparticle densities of states and quasiparticle band structures. The Curie temperature T_C of the EuO films turns out to be strongly thickness-dependent, starting from a very low value = 15K for the monolayer and reaching the bulk value at about 25 layers

    Kondo effect in real quantum dots

    Full text link
    Exchange interaction within a quantum dot strongly affects the transport through it in the Kondo regime. In a striking difference with the results of the conventional model, where this interaction is neglected, here the temperature and magnetic field dependence of the conductance may become non-monotonic: its initial increase follows by a drop when temperature and magnetic field are lowered

    Exchange coupling in Eu monochalcogenides from first principles

    Full text link
    Using a density functional method with explicit account for strong Coulomb repulsion within the 4f shell, we calculate effective exchange parameters and the corresponding ordering temperatures of the (ferro)magnetic insulating Eu monochalcogenides (EuX; X=O,S,Se,Te) at ambient and elevated pressure conditions. Our results provide quantitative account of the many-fold increase of the Curie temperatures with applied pressure and reproduce well the enhancement of the tendency toward ferromagnetic ordering across the series from telluride to oxide, including the crossover from antiferromagnetic to ferromagnetic ordering under pressure in EuTe and EuSe. The first and second neighbor effective exchange are shown to follow different functional dependencies. Finally, model calculations indicate a significant contribution of virtual processes involving the unoccupied f states to the effective exchange.Comment: 4 pages, 6 figure

    Finite-Size Bosonization of 2-Channel Kondo Model: a Bridge between Numerical Renormalization Group and Conformal Field Theory

    Full text link
    We generalize Emery and Kivelson's (EK) bosonization-refermionization treatment of the 2-channel Kondo model to finite system size and on the EK-line analytically construct its exact eigenstates and finite-size spectrum. The latter crosses over to conformal field theory's (CFT) universal non-Fermi-liquid spectrum (and yields the most-relevant operators' dimensions), and further to a Fermi-liquid spectrum in a finite magnetic field. Our approach elucidates the relation between bosonization, scaling techniques, the numerical renormalization group (NRG) and CFT. All CFT's Green's functions are recovered with remarkable ease from the model's scattering states.Comment: 4 pages, 1 figure, Revte

    Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis

    Get PDF
    We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into either an unstable or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the field, the speed of a front propagating into the unstable state is given either by the so-called linear marginal stability velocity or by the nonlinear marginal stability expression. The cross-over between these two regimes can be tuned by a magnetic field. The influence of initial conditions on the velocity selection problem can also be studied in such experiments. SmC^* therefore offers a unique opportunity to study different aspects of front propagation in an experimental system

    The visible effect of a very heavy magnetic monopole at colliders

    Get PDF
    If a heavy Dirac monopole exists, the light-to-light scattering below the monopole production threshold is enhanced due to strong coupling of monopoles to photons. At the next Linear Collider with electron beam energy 250 GeV this photon pair production could be observable at monopole masses less than 2.5-6.4 TeV in the e+ee^+e^- mode or 3.7-10 TeV in the γγ\gamma\gamma mode, depending on the monopole spin. At the upgraded Tevatron such an effect is expected to be visible at monopole masses below 1-2.5 TeV. The strong dependence on the initial photon polarizations allows to find the monopole spin in experiments at e+ee^+e^- and γγ\gamma\gamma colliders. We consider the ZγZ\gamma production and the 3γ3\gamma production at e+ee^+e^- and pppp or ppˉp\bar{p} colliders via the same monopole loop. The possibility to discover these processes is significantly lower than that of the γγ\gamma\gamma case.Comment: 18 pages, 2 figures, RevTe

    Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime

    Full text link
    Using the time-dependent non-crossing approximation, we calculate the transient response of the current through a quantum dot subject to a finite bias when the dot level is moved suddenly into a regime where the Kondo effect is present. After an initial small but rapid response, the time-dependent conductance is a universal function of the temperature, bias, and inverse time, all expressed in units of the Kondo temperature. Two timescales emerge: the first is the time to reach a quasi-metastable point where the Kondo resonance is formed as a broad structure of half-width of the order of the bias; the second is the longer time required for the narrower split peak structure to emerge from the previous structure and to become fully formed. The first time can be measured by the gross rise time of the conductance, which does not substantially change later while the split peaks are forming. The second time characterizes the decay rate of the small split Kondo peak (SKP) oscillations in the conductance, which may provide a method of experimental access to it. This latter timescale is accessible via linear response from the steady stateand appears to be related to the scale identified in that manner [A. Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page

    Theory of Scanning Tunneling Spectroscopy of a Magnetic Adatom on a Metallic Surface

    Full text link
    A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling current between a scanning tunneling microscope (STM) tip and a metallic surface with an individual magnetic adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a weak tunneling current in terms of the dressed impurity Green function, the impurity-free surface Green function, and the tunneling matrix elements. This generalizes Fano's analysis to the interacting case. The differential-conductance lineshapes seen in recent STM experiments with the tip directly over the magnetic adatom are reproduced within our model, as is the rapid decay, \sim 10\AA, of the low-bias structure as one moves the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.Comment: 12 pages, 9 figures; to appear in Phys. Rev.

    Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach

    Full text link
    We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of the 1/N expansion is developed. The method allows us to study various consequences of the conduction electron correlations for the ground state and the low-energy excitations. We analyse the characteristic energy scale in the limit of weak conduction electron interactions. Results are reported for static properties (impurity valence, charge susceptibility, magnetic susceptibility, and specific heat) in the low-temperature limit.Comment: 16 pages, 9 figure
    corecore