19 research outputs found

    Using NSPT for the Removal of Hypercubic Lattice Artifacts

    Full text link
    The treatment of hypercubic lattice artifacts is essential for the calculation of non-perturbative renormalization constants of RI-MOM schemes. It has been shown that for the RI'-MOM scheme a large part of these artifacts can be calculated and subtracted with the help of diagrammatic Lattice Perturbation Theory (LPT). Such calculations are typically restricted to 1-loop order, but one may overcome this limitation and calculate hypercubic corrections for any operator and action beyond the 1-loop order using Numerical Stochastic Perturbation Theory (NSPT). In this study, we explore the practicability of such an approach and consider, as a first test, the case of Wilson fermion bilinear operators in a quenched theory. Our results allow us to compare boosted and unboosted perturbative corrections up to the 3-loop order.Comment: 7 pages, 6 figures, talk presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, New York, USA; PoS(LATTICE2014)29

    Discretization Errors for the Gluon and Ghost Propagators in Landau Gauge using NSPT

    Full text link
    The subtraction of hypercubic lattice corrections, calculated at 1-loop order in lattice perturbation theory (LPT), is common practice, e.g., for determinations of renormalization constants in lattice hadron physics. Providing such corrections beyond 1-loop order is however very demanding in LPT, and numerical stochastic perturbation theory (NSPT) might be the better candidate for this. Here we report on a first feasibility check of this method and provide (in a parametrization valid for arbitrary lattice couplings) the lattice corrections up to 3-loop order for the SU(3) gluon and ghost propagators in Landau gauge. These propagators are ideal candidates for such a check, as they are available from lattice simulations to high precision and can be combined to a renormalization group invariant product (Minimal MOM coupling) for which a 1-loop LPT correction was found to be insufficient to remove the bulk of the hypercubic lattice artifacts from the data. As a bonus, we also compare our results with the ever popular H(4) method.Comment: 7 pages, 5 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    Full text link
    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory (NSPT). In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite-size and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order NSPT.Comment: 18 pages, 19 figures, 5 table

    Exploring the Nucleon Structure from First Principles of QCD

    Get PDF
    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions

    Lattice studies at zero and finite temperature in the SU(2) Higgs model at small couplings

    No full text
    Bunk B, Ilgenfritz E-M, Kripfganz J, Schiller A. Lattice studies at zero and finite temperature in the SU(2) Higgs model at small couplings. Physics Letters B. 1992;284(3-4):371-376.In the weak coupling region (beta=8, lambda=0.0017235 and 0.023705) the Higgs transition is determined on symmetrical (16(4)) as well as thermal (16(3)xN(tau)) lattices. This transition is weakly first order and becomes weaker for larger lambda. Higgs and vector boson masses are obtained near to the phase transition, consistent with a mass ratio depending on lambda only. The transition temperature is obtained as a function of the Higgs mass. The results are compared with perturbative relations
    corecore