34 research outputs found

    Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    Get PDF
    Background: Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Methods: Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT- PCR. Results: We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116). We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/ STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Conclusion: Our results show that centrosome amplification alone is not sufficient to induce chromosomal instability in colon cancer cells with a MIN phenotype. Alternatively, centrosome amplification has to be associated with alterations in genes regulating mitosis progression such as Aurora- A/STK15 to trigger CIN

    CENPA overexpression promotes genome instability in pRb-depleted human cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb) has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified.</p> <p>Results</p> <p>Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss.</p> <p>Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC). However, despite <it>MAD2 </it>up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed <it>BRCA1 </it>overexpression that seemed responsible for <it>MAD2 </it>up-regulation.</p> <p>Post-transcriptional silencing of <it>CENPA </it>by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells.</p> <p>Conclusion</p> <p>Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing <it>CENPA </it>overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.</p

    RNAi mediated acute depletion of Retinoblastoma protein (pRb) promotes aneuploidy in human primary cells via micronuclei formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (<it>RB</it>) participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA) specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability.</p> <p>Results</p> <p>Acutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC) the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular <it>AURORA-A </it>and <it>PLK1 </it>overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by <it>RB </it>acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy.</p> <p>Conclusion</p> <p>Here we show for the first time that <it>RB </it>acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger chromosome segregation errors, are responsible for aneuploidy in primary human fibroblasts where pRb is acutely depleted.</p

    Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood.</p> <p>Results</p> <p>To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the <it>DNMT1 </it>gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1 depletion slowed down proliferation of near-diploid human tumor cells (HCT116) and triggered G1 arrest in primary human fibroblasts (IMR90), by inducing p53 stabilization and, in turn, p21<sup>waf1 </sup>transactivation. Remarkably, p53 increase was not caused by DNA damage and was not observed after p14-ARF post-transcriptional silencing. Interestingly, DNMT1 silenced cells with p53 or p14-ARF depleted did not arrest in G1 but, instead, underwent DNA hypomethylation and became aneuploid.</p> <p>Conclusion</p> <p>Our results suggest that DNMT1 depletion triggers a p14ARF/p53 dependent cell cycle arrest to counteract the aneuploidy induced by changes in DNA methylation.</p

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

    Full text link
    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.Comment: 20 pages Late

    Aurora-A transcriptional silencing and Vincristine treatment show a synergistic effect in human tumor cells

    No full text
    Aurora-A is a centrosome-associated serine/threonine kinase that is overexpressed in multiple types of human tumors. Primarily, Aurora-A functions in centrosome maturation and mitotic spindle assembly. Overexpression of Aurora-A induces centrosome amplification and G(2)/M cell-cycle progression. Recently, it was observed that overexpression of Aurora-A renders cells resistant to cisplatin (CDDP)-, etoposide, and paclitaxel-induced apoptosis. Our results indicate that already in initial stages of cancer progression Aurora-A overexpression could have a major role in inducing supernumerary centrosomes and aneuploidy, as shown by immunohistochemistry on tissue sections from various stages of human colon cancer. Aneuploidy was also observed after Aurora-A ectopic overexpression in colon cancer cells with MIN phenotype. Silencing of Aurora-A by RNA interference in tumor cell lines triggered arrest of the cell cycle associated to apoptosis/mitotic catastrophe. Finally, Aurora-A transcriptional silencing seems to confer cancer cells a greater sensitivity to chemotherapy by vincristine, indicating Aurora-A as a possible gene target in cancer therapy
    corecore