538 research outputs found

    Morphology and taxonomy of the genus Ramazzottius (Eutardigrada; Ramazzottiidae) with the integrative description of Ramazzottius kretschmanni sp. nov

    Get PDF
    The species of the genus Ramazzottius (Ramazzottiidae, Eutardigrada) are among the most common and widespread tardigrade species in the world. Most of the 28 Ramazzottius species have been described only with morphological characters which were most of the time represented only with drawings. The discovery of a new species of this genus in the Black Forest (Germany) provided the opportunity to compare this species with the type specimens of ten Ramazzottius species, to propose the status of species dubia for Ramazzottius edmondabouti, and through new photographs to elucidate the anatomy of animals and eggs (in particular of the head sensory regions, eye spots, buccal tube, ornamentations of the dorsal posterior cuticle, and morphology of egg processes). These thorough observations led to a better understanding of the diversity and evolution, not only of this cosmopolitan genus, but also of other eutardigrade genera. The new species Ramazzottius kretschmanni is described with an integrative approach integrating morphological (light and electron microscopy observations and morphometric data) and molecular (cox1 and ITS2 genes) data. The PTP and ASAP analyses confirmed the validity of the new species from a molecular point of view. The new species is morphologically similar to Ramazzottius oberhaeuseri, but is distinguishable by the smooth cuticle, the presence of a “cheek-like” area on the head, and the size of egg processes as well as different sequences of the molecular markers

    Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB

    Get PDF
    High flow rate injection and related hydromechanical interaction are the most important factors in reservoir development of Enhanced Geothermal Systems (EGS). GeoLaB, a new generic geothermal underground research laboratory (URL), is proposed for controlled high flow rate experiments (CHFE) to address limited comprehension of coupled processes connected to EGS reservoir flow conditions. As analogue for typical EGS development, CHFE require specific hydromechanical conditions including a connected fracture network in crystalline basement rock, sufficient hydraulic fracture transmissivities, a strike-slip to normal faulting tectonic regime, controllable hydraulic boundary conditions, and hydrothermal alteration fracture fillings that improve conditions for hydromechanical interaction. With the aim to identify most appropriate areas for future site selection, four criteria have been established based on the EGS reference site of Soultz. Two URLs in crystalline basement worldwide approximate the requirements of a new generic GeoLaB and may be used for accompanying experimentation. Besides favourable geological, hydraulic, and stress conditions, the vicinity to long-term EGS production favours the southern Black Forest as potential region for GeoLaB. Therefore, an exemplary site assessment has been carried out at “Wilhelminenstollen” in the southern Black Forest (Germany). New remote sensing, hydrochemical, and geophysical analyses as well as reactivation potential, and stress modelling were added to complement existing geological and hydrogeological information. At this site, reactivation potential analysis reveals two local maxima prone for shear reactivation as strike-slip faults. The highest lineament density is observed for the N110°E strike direction that is associated with both slip and dilation tendency maxima. Clay minerals occur in fractures and the matrix. Local, partly water-bearing fractures, when partly filled with ore minerals, were connected to veins in the tunnel using shallow geophysical methods. Hydrochemical data reveal infiltration of the tunnel water from at least 500 m above the tunnel. The results suggest a crystalline basement with a fracture network that is regionally connected and water-conducting. Hydraulic conductivity in the southern Black Forest granite is estimated to amount to about 4.5·10−8 m s−1 at 500 m depth. The hydraulic boundary conditions exclude unknown drainage. Analyses of the influence of topography on orientation and magnitude of the maximum stress indicate a minimum overburden of about 500 m for regional reactivation to be valid. In conclusion, the southern Black Forest and in particular “Wilhelminenstollen” offers favourable condition for CHFE. Final decision on the GeoLaB site is to be drawn from forthcoming exploration wells

    Comparing the quality of crowdsourced data contributed by expert and non-experts

    Get PDF
    There is currently a lack of in-situ environmental data for the calibration and validation of remotely sensed products and for the development and verification of models. Crowdsourcing is increasingly being seen as one potentially powerful way of increasing the supply of in-situ data but here are a number of concerns over the subsequent use of the data, in particular over data quality. This paper examined crowdsourced data from the Geo-Wiki crowdsourcing tool for land cover validation to determine whether there were significant differences in quality between the answers provided by experts and non-experts in the domain of remote sensing and therefore the extent to which crowdsourced data describing human impact and land cover can be used in further scientific research. The results showed that there was little difference between experts and non-experts in identifying human impact although results varied by land cover while experts were better than non-experts in identifying the land cover type. This suggests the need to create training materials with more examples in those areas where difficulties in identification were encountered, and to offer some method for contributors to reflect on the information they contribute, perhaps by feeding back the evaluations of their contributed data or by making additional training materials available. Accuracies were also found to be higher when the volunteers were more consistent in their responses at a given location and when they indicated higher confidence, which suggests that these additional pieces of information could be used in the development of robust measures of quality in the future

    Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki

    Get PDF
    Information about land cover and land use is needed for a wide range of applications such as nature protection and biodiversity, forest and water management, urban and transport planning, natural hazard prevention and mitigation, monitoring of agricultural policies and economic land use modelling. A number of different remotely-sensed global land cover products are available but studies have shown that there are large spatial discrepancies between these different products when compared. To address this issue of land cover uncertainty, a tool called Geo-Wiki was developed, which integrates online and mobile applications, high resolution satellite imagery available from Google Earth, and data collection through crowdsourcing as a mechanism for validating and improving globally relevant spatial information on land cover and land use. Through its growing network of volunteers and a number of successful data collection campaigns, almost 5 million samples of land cover and land use have been collected at many locations around the globe. This paper provides an overview of the main features of Geo-Wiki, and then using a series of examples, illustrates how the crowdsourced data collected through Geo-Wiki have been used to improve information on land cover and land use

    Highlighting continued uncertainty in global land cover maps for the user community

    Get PDF
    In the last 10 years a number of new global datasets have been created and new, more sophisticated alorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (50 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disargeement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these prducts, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more 'in situ' data for training, calibration and validation are very important conditions for improving future global land cover products

    A global dataset of crowdsourced land cover and land use reference data

    Get PDF
    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general

    A platform to visualize, analyze and improve biomass datasets: http://biomass.geo-wiki.org

    Get PDF
    Terrestrial biomass has been recognized as an essential climate variable and as such represents an important dataset for the scientific community. While a lot of effort has gone into producing such datasets in recent years, there is a need to begin to harmonize efforts. To that end, http://Biomass.Geo-Wiki.org presents a collection of global, regional and in-situ biomass datasets produced by a number of institutions, overlaid on the Google Earth platform

    Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere

    Get PDF
    The size of aerosol particles has fundamental effects on their chemistry and radiative effects. We explore those effects using aerosol size and composition data in the lowermost stratosphere along with calculations of light scattering. In the size range between about 0.1 and 1.0 ”m diameter (accumulation mode), there are at least two modes of particles in the lowermost stratosphere. The larger mode consists mostly of particles produced in the stratosphere, and the smaller mode consists mostly of particles transported from the troposphere. The stratospheric mode is similar in the Northern and Southern Hemisphere, whereas the tropospheric mode is much more abundant in the Northern Hemisphere. The purity of sulfuric acid particles in the stratospheric mode shows that there is limited production of secondary organic aerosol in the stratosphere, especially in the Southern Hemisphere. Out of eight sets of flights sampling the lowermost stratosphere (four seasons and two hemispheres) there were three with large injections of specific materials: volcanic, biomass burning, or dust. The stratospheric and tropospheric modes have very different roles for radiative effects on climate and for heterogeneous chemistry. Because the larger particles are more efficient at scattering light, most of the radiative effect in the lowermost stratosphere is due to stratospheric particles. In contrast, the tropospheric particles can have more surface area, at least in the Northern Hemisphere. The surface area of tropospheric particles could have significant implications for heterogeneous chemistry because these particles, which are partially neutralized and contain organics, do not correspond to the substances used for laboratory studies of stratospheric heterogeneous chemistry. We then extend the analysis of size-dependent properties to particles injected into the stratosphere, either intentionally or from volcanoes. There is no single size that will simultaneously maximize the climate impact relative to the injected mass, infrared heating, potential for heterogeneous chemistry, and undesired changes in direct sunlight. In addition, light absorption in the far ultraviolet is identified as an issue requiring more study for both the existing and potentially modified stratosphere.</p
    • 

    corecore