129 research outputs found
Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2
Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios
Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection
AbstractRNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines
Histone citrullination represses miRNA expression resulting in increased oncogene mRNAs in somatolactotrope cells.
Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas is unknown. To begin to address these questions, we first examined normal human pituitaries and pituitary adenomas and found that PAD2, PAD4 and citrullinated histones are highest in prolactinomas and somatoprolactinomas. In the somatoprolactinoma-derived GH3 cell line, PADs citrullinate histone H3, which is attenuated by a pan-PAD inhibitor. RNA-sequencing and ChIP studies show that the expression of microRNAs let-7c-2, miR-23b and miR-29c is suppressed by histone citrullination. Our studies demonstrate that these miRNAs directly target the mRNA of the oncogenes HMGA, IGF-1 and N-MYC, which are highly implicated in human prolactinoma/somatoprolactinoma pathogenesis. Our results are the first to define a direct role for PAD catalyzed histone citrullination in miRNA expression, which may underlie the etiology of prolactinoma and somatoprolactinoma tumors through regulation of oncogene expression
Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells
© Copyright © 2021 Martin, Sundararajan, Ermi, Heron, Gonzales, Lee, Anguiano-Mendez, Schilkey, Pedraza-Reyes and Robleto. For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress
C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response
Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level
Transcriptomic Changes Associated with Pregnancy in a Marsupial, the Gray Short-Tailed Opossum Monodelphis domestica.
Live birth has emerged as a reproductive strategy many times across vertebrate evolution; however, mammals account for the majority of viviparous vertebrates. Marsupials are a mammalian lineage that last shared a common ancestor with eutherians (placental mammals) over 148 million years ago. Marsupials are noted for giving birth to highly altricial young after a short gestation, and represent humans' most distant viviparous mammalian relatives. Here we ask what insight can be gained into the evolution of viviparity in mammals specifically and vertebrates in general by analyzing the global uterine transcriptome in a marsupial. Transcriptome analyses were performed using NextGen sequencing of uterine RNA samples from the gray short-tailed opossum, Monodelphis domestica. Samples were collected from late stage pregnant, virgin, and non-pregnant experienced breeders. Three different algorithms were used to determine differential expression, and results were confirmed by quantitative PCR. Over 900 opossum gene transcripts were found to be significantly more abundant in the pregnant uterus than non-pregnant, and over 1400 less so. Most with increased abundance were genes related to metabolism, immune systems processes, and transport. This is the first study to characterize the transcriptomic differences between pregnant, non-pregnant breeders, and virgin marsupial uteruses and helps to establish a set of pregnancy-associated genes in the opossum. These observations allowed for comparative analyses of the differentially transcribed genes with other mammalian and non-mammalian viviparous species, revealing similarities in pregnancy related gene expression over 300 million years of amniote evolution
Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti
Abstract Background Environmental factors such as temperature, nutrient availability, and larval density determine the outcome of postembryonic development in mosquitoes. Suboptimal temperatures, crowding, and starvation during the larval phase reduce adult mosquito size, nutrient stores and affect vectorial capacity. Methods In this study we compared adult female Aedes aegypti, Rockefeller strain, raised under standard laboratory conditions (Large) with those raised under crowded and nutritionally deprived conditions (Small). To compare the gene expression and nutritional state of the major energy storage and metabolic organ, the fat body, we performed transcriptomics using Illumina based RNA-seq and metabolomics using GC/MS on females before and 24Â hours following blood feeding. Results Analysis of fat body gene expression between the experimental groups revealed a large number of significantly differentially expressed genes. Transcripts related to immunity, reproduction, autophagy, several metabolic pathways; including amino acid degradation and metabolism; and membrane transport were differentially expressed. Metabolite profiling identified 60 metabolites within the fat body to be significantly affected between small and large mosquitoes, with the majority of detected free amino acids at a higher level in small mosquitoes compared to large. Conclusions Gene expression and metabolites in the adult fat body reflect the individual post-embryonic developmental history of a mosquito larva. These changes affect nutritional storage and utilization, immunity, and reproduction. Therefore, it is apparent that changes in larval environment due to weather conditions, nutrition availability, vector control efforts, and other factors can affect adult vectorial capacity in the field
Overrepresented and underrepresented Biological Process GO terms in the increased transcription during pregnancy gene set.
<p>Overrepresented and underrepresented Biological Process GO terms in the increased transcription during pregnancy gene set.</p
Global transcriptomic similarities between samples.
<p>Dendrogram of Jensen-Shannon (JS) distances between transcriptomes of replicates with the pregnant (P), virgin (V), and non-pregnant past breeder (N) transcriptomes.</p
- …