313 research outputs found

    Which Bosonic Loop Corrections are Tested in Electroweak Precision Measurements?

    Get PDF
    The nature of the electroweak bosonic loop corrections to which current precision experiments are sensitive is explored. The set of effective parameters \De x, \De y, and \eps, which quantify SU(2) violation in an effective Lagrangian, is shown to be particularly useful for this purpose. The standard bosonic corrections are sizable only in the parameter \De y, while \De x and \eps are sufficiently well approximated by the pure fermion-loop prediction. By analyzing the contributions to \De y it is shown that the bosonic loop corrections resolved by the present precision data are induced by the change in energy scale between the low-energy process muon decay and the energy scale of the LEP1 observables. If the (theoretical value of the) leptonic width of the W boson is used as input parameter instead of the Fermi constant \GF, no further bosonic loop corrections are necessary for compatibility between theory and experiment.Comment: 15 pages, latex, 6 uuencoded postscript figures, talk presented by G. Weiglein at The Second German-Polish Symposium, New Ideas in the Theory of Fundamental Interactions, Zakopane, September 199

    Diffractive production and the total cross section in deep inelastic scattering

    Get PDF
    We explore the consequences for diffractive production, gamma* p --> X p, in deep inelastic scattering at low values of x\sim Q^2/W^2 <<1 that follow from our recent representation of the total photoabsorption cross section, sigma_{gamma* p}, in the generalized vector dominance/ color dipole picture(GVD/CDP) that is based on the generic structure of the two-gluon-exchange from QCD. Sum rules are derived that relate the transverse and the longitudinal (virtual) photoabsorption cross section to diffractive forward production of q q-bar states that carry photon quantum numbers ("elastic diffraction"). Agreement with experiment in the W^2 and Q^2 dependence is found for M_X^2/Q^2<<1, where M_X is the mass of the produced system X. An additional component ("inelastic diffraction"), not actively contributing to the forward Compton amplitude, is needed for diffractive production at high values of M_X. Our previous theoretical representation of the total photoabsorption cross section sigma_{gamma* p}=sigma_{gamma* p}(eta), in terms of the scaling variable eta=(Q^2+m_0^2)/Lambda^2(W^2) is extended to include the entire kinematic domain, x==0, where scaling in eta holds experimentally.Comment: 19 pages with 4 figures,(eps and ps files), Late

    The Color Dipole Picture of low-x DIS: Model-Independent and Model-Dependent Results

    Get PDF
    We present a detailed examination of the color-dipole picture (CDP) of low-xx deep inelastic scattering. We discriminate model-independent results, not depending on a specific parameterization of the dipole cross section, from model-dependent ones. The model-independent results include the ratio of the longitudinal to the transverse photoabsorption cross section at large Q2Q^2, or equivalently the ratio of the longitudinal to the unpolarized proton structure function, FL(x,Q2)=0.27F2(x,Q2)F_L (x,Q^2)=0.27 F_2 (x, Q^2), as well as the low-xx scaling behavior of the total photoabsorption cross section σγp(W2,Q2)=σγp(η(W2,Q2))\sigma_{\gamma^*p} (W^2, Q^2)=\sigma_{\gamma^*p} (\eta (W^2, Q^2)) as log(1/η(W2,Q2))\log (1 / \eta (W^2, Q^2)) for η(W2,Q2)<1\eta (W^2, Q^2) <1, and as 1/η(W2,Q2)1/\eta (W^2, Q^2) for η(W2,Q2)1\eta (W^2, Q^2) \gg 1. Here, η(W2,Q2)\eta (W^2, Q^2) denotes the low-xx scaling variable, η(W2,Q2)=(Q2+m02)/Λsat2(W2)\eta (W^2, Q^2)=(Q^2 + m^2_0) / \Lambda^2_{sat} (W^2) with Λsat2(W2)\Lambda^2_{sat} (W^2) being the saturation scale. The model-independent analysis also implies limW2,Q2fixedσγp(W2,Q2)/σγp(W2)1\lim\limits_{W^2\rightarrow\infty, Q^2 {\rm fixed}} \sigma_{\gamma^*p} (W^2, Q^2) / \sigma_{\gamma p} (W^2) \rightarrow 1 at any Q2Q^2 for asymptotically large energy, WW. Consistency with pQCD evolution determines the underlying gluon distribution and the numerical value of C2=0.29C_2 = 0.29 in the expression for the saturation scale, Λ2(W2)(W2)C2\Lambda^2 (W^2) \sim (W^2)^{C_2}. In the model-dependent analysis, by restricting the mass of the actively contributing qqˉq \bar q fluctuations by an energy-dependent upper bound, we extend the validity of the color-dipole picture to xQ2/W20.1x \cong Q^2 / W^2 \le 0.1. The theoretical results agree with the world data on DIS for 0.036GeV2Q2316GeV20.036 {\rm GeV}^2 \le Q^2 \le 316 {\rm GeV}^2.Comment: 77 pages, 30 figure

    Deep inelastic scattering and "elastic" diffraction

    Get PDF
    We examine the total cross section of virtual photons on protons, σγp(W2,Q2)\sigma_{\gamma^* p}(W^2,Q^2), at low xQ2/W21x \cong Q^2/W^2 \ll 1 and its connection with ``elastic'' diffractive production γT,LpXT,LJ=1p\gamma^*_{T,L}p \to X^{J=1}_{T,L} p in the two-gluon exchange dynamics for the virtual forward Compton scattering amplitude. Solely based on the generic structure of two-gluon exchange, we establish that the cross section is described by the (imaginary part of the) amplitude for forward scattering of qqˉq \bar q vector states, (qqˉ)T,LJ=1p(qqˉ)T,LJ=1p(q \bar q)^{J=1}_{T,L} p \to (q \bar q)^ {J=1}_{T,L} p. The generalized vector dominance/color dipole picture (GVD/CDP) is accordingly established to only rest on the two-gluon-exchange generic structure. This is explicitly seen by the sum rules that allow one to directly relate the total cross section to the cross section for elastic diffractive forward production, γT,Lp(qqˉ)T,LJ=1p\gamma^*_{T,L} p\to (q \bar q)^{J=1}_{T,L} p, of vector states.Comment: 24 pages, latex file with three eps figures. BI-TP 2002/2

    Polarization Observables for Two-Pion Production off the Nucleon

    Full text link
    We develop polarization observables for the processes γNππN\gamma N\to\pi\pi N and πNππN\pi N\to\pi\pi N, using both a helicity and hybrid helicity-transversity basis. Such observables are crucial if processes that produce final states consisting of a spin-1/2 baryon and two pseudoscalar mesons are to be fully exploited for baryon spectroscopy. We derive relationships among the observables, as well as inequalities that they must satisfy. We also discuss the observables that must be measured in `complete' experiments, and briefly examine the prospects for measurement of some of these observables in the near future.Comment: 20 pages, using revtex

    K*-couplings for the antidecuplet excitation

    Full text link
    We estimate the coupling of the K* vector meson to the N-->Theta+ transition employing unitary symmetry, vector meson dominance, and results from the GRAAL Collaboration for eta photoproduction off the neutron. Our small numerical value for the coupling constant is consistent with the non-observation of the Theta+ in recent CLAS searches for its photoproduction. We also estimate the K*-coupling for the N-->Sigma* excitation, with Sigma* being the Sigma-like antidecuplet partner of the Theta+-baryon.Comment: 9 pages, 1 figure. Minor changes in text and abstract, references added; version to appear in Phys. Rev.

    Some Radiative Corrections to Neutrino Scattering: I Neutral Currents

    Full text link
    With the advent of high precision neutrino scattering experiments comes the need for improved radiative corrections. We present a phenomenological analysis of some contributions to the production of photons in neutrino neutral current scattering that are relevant to experiments subsuming the 1% level.Comment: 17 Pages, 7 .pdf Figure

    Refined Analysis of the Electroweak Precision Data

    Full text link
    We refine our recent analysis of the electroweak precision data at the \PZO\ pole by including the hadronic decay modes of the \PZO. Within the framework of an effective Lagrangian we parametrize SU(2)SU(2) violation by the additional process-specific parameters \De y_\nu, \De\yh, and \De\yb (for the \PZO\nu\bar\nu, \PZO\Pq\bar\Pq, and \PZO\Pb\bar\Pb vertices) together with the previously introduced parameters \De x, \De y, and \eps. We find that a six-parameter analysis of the experimental data is indeed feasible, and it is carried out in addition to a four-parameter fit for \De x, \De y, \eps, and \De\yb only. We reemphasize that the experimental data have become sensitive to the (combined) magnitude of the vertex corrections at the \PWp\Pl\bar\nu (\PWm\nu\bar\Pl) and \PZO\Pl\bar\Pl vertices, \De y, which is insensitive to the notion of the Higgs mechanism but dependent on the non-Abelian, trilinear vector-boson coupling. Full explicit analytical results for the standard one-loop predictions for the above-mentioned parameters are given, and the leading two-loop top-quark effects are included. The analytic formluae for the analysis of the experimental data in terms of the parameters \De x, \De y etc.\ are presented in order to encourage experimentalists to persue such an analysis by themselves with future data.Comment: 28 pages latex, 9 figures in uuencoded form, trivial misprint correcte

    Quantification and Evidence for Mechanically Metered Release of Pygidial Secretions in Formic Acid-Producing Carabid Beetles

    Get PDF
    This study is the first to measure the quantity of pygidial gland secretions released defensively by carabid beetles (Coleoptera: Carabidae) and to accurately measure the relative quantity of formic acid contained in their pygidial gland reservoirs and spray emissions. Individuals of three typical formic acid producing species were induced to repeatedly spray, ultimately exhausting their chemical compound reserves. Beetles were subjected to faux attacks using forceps and weighed before and after each ejection of chemicals. Platynus brunneomarginatus (Mannerheim) (Platynini), P. ovipennis (Mannerheim) (Platynini) and Calathus ruficollis Dejean (Sphodrini), sprayed average quantities with standard error of 0.313 ± 0.172 mg, 0.337 ± 0.230 mg, and 0.197 ± 0.117 mg per spray event, respectively. The quantity an individual beetle released when induced to spray tended to decrease with each subsequent spray event. The quantity emitted in a single spray was correlated to the quantity held in the reservoirs at the time of spraying for beetles whose reserves are greater than the average amount emitted in a spray event. For beetles with a quantity less than the average amount sprayed in reserve there was no significant correlation. For beetles comparable in terms of size, physiological condition and gland reservoir fullness, the shape of the gland reservoirs and musculature determined that a similar effort at each spray event would mechanically meter out the release so that a greater amount was emitted when more was available in the reservoir. The average percentage of formic acid was established for these species as 34.2%, 73.5% and 34.1% for for P. brunneomarginatus, P. ovipennis and C. ruficollis, respectively. The average quantities of formic acid released by individuals of these species was less than two-thirds the amount shown to be lethal to ants in previously published experiments. However, the total quantity from multiple spray events from a single individual could aggregate to quantities at or above the lethal level, and lesser quantities are known to act as ant alarm pheromones. Using a model, one directed spray of the formic acid and hydrocarbon mix could spread to an area of 5–8 cm diameter and persisted for 9–22 seconds at a threshold level known to induce alarm behaviors in ants. These results show that carabid defensive secretions may act as a potent and relatively prolonged defense against ants or similar predators even at a sub-lethal dose
    corecore