4,651 research outputs found

    Loop Groups and Discrete KdV Equations

    Full text link
    A study is presented of fully discretized lattice equations associated with the KdV hierarchy. Loop group methods give a systematic way of constructing discretizations of the equations in the hierarchy. The lattice KdV system of Nijhoff et al. arises from the lowest order discretization of the trivial, lowest order equation in the hierarchy, b_t=b_x. Two new discretizations are also given, the lowest order discretization of the first nontrivial equation in the hierarchy, and a "second order" discretization of b_t=b_x. The former, which is given the name "full lattice KdV" has the (potential) KdV equation as a standard continuum limit. For each discretization a Backlund transformation is given and soliton content analyzed. The full lattice KdV system has, like KdV itself, solitons of all speeds, whereas both other discretizations studied have a limited range of speeds, being discretizations of an equation with solutions only of a fixed speed.Comment: LaTeX, 23 pages, 1 figur

    Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    Get PDF
    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented

    Complex trajectory method in time-dependent WKB

    Full text link
    We present a significant improvement to a time-dependent WKB (TDWKB) formulation developed by Boiron and Lombardi [JCP {\bf108}, 3431 (1998)] in which the TDWKB equations are solved along classical trajectories that propagate in the complex plane. Boiron and Lombardi showed that the method gives very good agreement with the exact quantum mechanical result as long as the wavefunction does not exhibit interference effects such as oscillations and nodes. In this paper we show that this limitation can be overcome by superposing the contributions of crossing trajectories. We also demonstrate that the approximation improves when incorporating higher order terms in the expansion. These improvements could make the TDWKB formulation a competitive alternative to current time-dependent semiclassical methods

    Mathematical modeling of the aerodynamic characteristics in flight dynamics

    Get PDF
    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated

    Quantifying the Effect of Non-Larmor Motion of Electrons on the Pressure Tensor

    Get PDF
    In space plasma, various effects of magnetic reconnection and turbulence cause the electron motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the electron velocity distribution function and lead to the appearance of the "non-gyrotropic" elements in the pressure tensor. Quantification of this effect has important applications in space and laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic reconnection in space observations. Three different measures of agyrotropy of pressure tensor have previously been proposed, namely, A∅eA\varnothing_e, DngD_{ng} and QQ. The multitude of contradictory measures has caused confusion within the community. We revisit the problem by considering the basic properties an agyrotropy measure should have. We show that A∅eA\varnothing_e, DngD_{ng} and QQ are all defined based on the sum of the principle minors (i.e. the rotation invariant I2I_2) of the pressure tensor. We discuss in detail the problems of I2I_2-based measures and explain why they may produce ambiguous and biased results. We introduce a new measure AGAG constructed based on the determinant of the pressure tensor (i.e. the rotation invariant I3I_3) which does not suffer from the problems of I2I_2-based measures. We compare AGAG with other measures in 2 and 3-dimension particle-in-cell magnetic reconnection simulations, and show that AGAG can effectively trace the EDR of reconnection in both Harris and force-free current sheets. On the other hand, A∅eA\varnothing_e does not show prominent peaks in the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that A∅eA\varnothing_e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying magnetic reconnection in more general situations other than Harris sheet reconnection.Comment: accepted by Phys. of Plasm

    Consequences of Zeeman Degeneracy for van der Waals Blockade between Rydberg Atoms

    Full text link
    We analyze the effects of Zeeman degeneracies on the long-range interactions between like Rydberg atoms, with particular emphasis on applications to quantum information processing using van der Waals blockade. We present a general analysis of how degeneracies affect the primary error sources in blockade experiments, emphasizing that blockade errors are sensitive primarily to the weakest possible atom-atom interactions between the degenerate states, not the mean interaction strength. We present explicit calculations of the van der Waals potentials in the limit where the fine-structure interaction is large compared to the atom-atom interactions. The results are presented for all potential angular momentum channels invoving s, p, and d states. For most channels there are one or more combinations of Zeeman levels that have extremely small dipole-dipole interactions and are therefore poor candidates for effective blockade experiments. Channels with promising properties are identified and discussed. We also present numerical calculations of Rb and Cs dipole matrix elements and relevant energy levels using quantum defect theory, allowing for convenient quantitative estimates of the van der Waals interactions to be made for principal quantum numbers up to 100. Finally, we combine the blockade and van der Waals results to quantitatively analyze the angular distribution of the blockade shift and its consequence for angular momentum channels and geometries of particular interest for blockade experiments with Rb.Comment: 16 figure

    Four Symmetries of the KdV equation

    Full text link
    We revisit the symmetry structure of integrable PDEs, looking at the specific example of the KdV equation. We identify 4 nonlocal symmetries of KdV depending on a parameter, which we call generating symmetries. We explain that since these are nonlocal symmetries, their commutator algebra is not uniquely determined, and we present three possibilities for the algebra. In the first version, 3 of the 4 symmetries commute; this shows that it is possible to add further (nonlocal) commuting flows to the standard KdV hierarchy. The second version of the commutator algebra is consistent with Laurent expansions of the symmetries, giving rise to an infinite dimensional algebra of hidden symmetries of KdV. The third version is consistent with asymptotic expansions for large values of the parameter, giving rise to the standard commuting symmetries of KdV, the infinite hierarchy of "additional symmetries", and their traditionally accepted commutator algebra (though this also suffers from some ambiguity as the additional symmetries are nonlocal). We explain how the 3 symmetries that commute in the first version of the algebra can all be regarded as infinitesimal double B\"acklund transformations. The 4 generating symmetries incorporate all known symmetries of the KdV equation, but also exhibit some remarkable novel structure, arising from their nonlocality. We believe this structure to be shared by other integrable PDEs.Comment: 22 page

    Symmetry structure of integrable hyperbolic third order equations

    Full text link
    We explore the application of generating symmetries, i.e. symmetries that depend on a parameter, to integrable hyperbolic third order equations, and in particular to consistent pairs of such equations as introduced by Adler and Shabat (AS). Our main result is that different infinite hierarchies of symmetries for these equations can arise from a single generating symmetry by expansion about different values of the parameter. We illustrate this, and study in depth the symmetry structure, for two examples. The first is an equation related to the potential KdV equation taken from AS. The second is a more general hyperbolic equation than the kind considered in AS. Both equations depend on a parameter, and when this parameter vanishes they become part of a consistent pair. When this happens, the nature of the expansions of the generating symmetries needed to derive the hierarchies also changes.Comment: 21 page
    • …
    corecore