2,898 research outputs found
An overview of large wind turbine tests by electric utilities
A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable
Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells
BACKGROUND: Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein σ3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating. RESULTS: The human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis. CONCLUSION: Our findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections
Simple proof of equivalence between adiabatic quantum computation and the circuit model
We prove the equivalence between adiabatic quantum computation and quantum
computation in the circuit model. An explicit adiabatic computation procedure
is given that generates a ground state from which the answer can be extracted.
The amount of time needed is evaluated by computing the gap. We show that the
procedure is computationally efficient.Comment: 5 pages, 2 figures. v2: improved gap estimates and added some more
detail
Sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia
PURPOSE: To report a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up. METHODS: Observational case report of one patient. RESULTS: A 31 year-old male with a history of cystic fibrosis presented with a central retinal vein occlusion (CRVO) in his left eye, followed by a CRVO in his right eye 4 years later. His medical workup was significant for elevated levels of homocysteine and gamma-globulins, which coincided with initiation of intravenous immunoglobulin (IVIG) proceeding his second CRVO. CONCLUSIONS: We describe a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up and discuss the important role of these risk factors in retinal venous occlusive disease
Anomalous diffusion in quantum Brownian motion with colored noise
Anomalous diffusion is discussed in the context of quantum Brownian motion
with colored noise. It is shown that earlier results follow simply and directly
from the fluctuation-dissipation theorem. The limits on the long-time
dependence of anomalous diffusion are shown to be a consequence of the second
law of thermodynamics. The special case of an electron interacting with the
radiation field is discussed in detail. We apply our results to wave-packet
spreading
Noise resistance of adiabatic quantum computation using random matrix theory
Besides the traditional circuit-based model of quantum computation, several
quantum algorithms based on a continuous-time Hamiltonian evolution have
recently been introduced, including for instance continuous-time quantum walk
algorithms as well as adiabatic quantum algorithms. Unfortunately, very little
is known today on the behavior of these Hamiltonian algorithms in the presence
of noise. Here, we perform a fully analytical study of the resistance to noise
of these algorithms using perturbation theory combined with a theoretical noise
model based on random matrices drawn from the Gaussian Orthogonal Ensemble,
whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure
Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions in Optical Lattices
We have observed Bragg scattering of photons from quantum degenerate
Rb atoms in a three-dimensional optical lattice. Bragg scattered light
directly probes the microscopic crystal structure and atomic wavefunction whose
position and momentum width is Heisenberg-limited. The spatial coherence of the
wavefunction leads to revivals in the Bragg scattered light due to the atomic
Talbot effect. The decay of revivals across the superfluid to Mott insulator
transition indicates the loss of superfluid coherence.Comment: 5 pages, 4 figure
The Quantization of Geodesic Deviation
There exists a two parameter action, the variation of which produces both the
geodesic equation and the geodesic deviation equation. In this paper it is
shown that this action can be quantized by the canonical method, resulting in
equations which generalize the Klein-Gordon equation. The resulting equations
might have applications, and also show that entirely unexpected systems can be
quantized. The possible applications of quantized geodesic deviation are to:
i)the spreading wave packet in quantum theory, ii)and also to the one particle
to many particle problem in second quantized quantum field theory.Comment: 9 pages, no diagrams, no tables, LaTex2
Quantum measurement and decoherence
Distribution functions defined in accord with the quantum theory of
measurement are combined with results obtained from the quantum Langevin
equation to discuss decoherence in quantum Brownian motion. Closed form
expressions for wave packet spreading and the attenuation of coherence of a
pair of wave packets are obtained. The results are exact within the context of
linear passive dissipation. It is shown that, contrary to widely accepted
current belief, decoherence can occur at high temperature in the absence of
dissipation. Expressions for the decoherence time with and without dissipation
are obtained that differ from those appearing in earlier discussions
- …