213 research outputs found
MALEO: Modular Assembly in Low Earth Orbit. A strategy for an IOC lunar base
Modular Assembly in Low Earth Orbit (MALEO) is a new strategy for building an initial operational capability lunar habitation base. In this strategy, the modular lunar base components are brought up to Low Earth Orbit by the Space Transportation System/Heavy Lift Launch Vehicle fleet, and assembled there to form a complete lunar base. Modular propulsion systems are then used to transport the MALEO lunar base, complete and intact, all the way to the moon. Upon touchdown on the lunar surface, the MALEO lunar habitation base is operational. An exo-skeletal truss superstructure is employed in order to uniformly absorb and distribute the rocket engine thrusting forces incurred by the MALEO lunar base during translunar injection, lunar orbit insertion, and lunar surface touchdown. The components, configuration, and structural aspects of the MALEO lunar base are discussed. Advantages of the MALEO strategy over conventional strategies are pointed out. It is concluded that MALEO holds promise for lunar base deployment
Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure
Layer-by-layer oxide molecular beam epitaxy has been used to synthesize
cuprate-nickelate multilayer structures of composition
(LaCuO)/LaO/(LaNiO). In a combined experimental and
theoretical study, we show that these structures allow a clean separation of
dopant and doped layers. Specifically, the LaO layer separating cuprate and
nickelate blocks provides an additional charge that, according to density
functional theory calculations, is predominantly accommodated in the
interfacial nickelate layers. This is reflected in an elongation of bond
distances and changes in valence state, as observed by scanning transmission
electron microscopy and x-ray absorption spectroscopy. Moreover, the predicted
charge disproportionation in the nickelate interface layers leads to a
thickness-dependent metal-to-insulator transition for , as observed in
electrical transport measurements. The results exemplify the perspectives of
charge transfer in metal-oxide multilayers to induce doping without introducing
chemical and structural disorder
Tunable Charge and Spin Order in PrNiO Thin Films and Superlattices
We have used polarized Raman scattering to probe lattice vibrations and
charge ordering in 12 nm thick, epitaxially strained PrNiO films, and in
superlattices of PrNiO with the band-insulator PrAlO. A carefully
adjusted confocal geometry was used to eliminate the substrate contribution to
the Raman spectra. In films and superlattices under tensile strain, which
undergo a metal-insulator transition upon cooling, the Raman spectra reveal
phonon modes characteristic of charge ordering. These anomalous phonons do not
appear in compressively strained films, which remain metallic at all
temperatures. For superlattices under compressive strain, the Raman spectra
show no evidence of anomalous phonons indicative of charge ordering, while
complementary resonant x-ray scattering experiments reveal antiferromagnetic
order associated with a modest increase in resistivity upon cooling. This
confirms theoretical predictions of a spin density wave phase driven by spatial
confinement of the conduction electrons.Comment: PRL, in pres
Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems
Resonant x ray scattering at the Dy M 5 and Ni L 3 absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO3 DyScO3 superlattices. For superlattices with 2 unit cell thick LaNiO3 layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T ind 18 K, Dy Ni exchange interactions across the LaNiO3 DyScO3 interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare earth and transition metal ions thus open up new perspectives for the manipulation of spin structures in metal oxide heterostructures and device
Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)
There are increasing indications that superconductivity competes with other
orders in cuprate superconductors, but obtaining direct evidence with
bulk-sensitive probes is challenging. We have used resonant soft x-ray
scattering to identify two-dimensional charge fluctuations with an
incommensurate periodicity of lattice units in the copper-oxide
planes of the superconductors (Y,Nd)BaCuO with hole
concentrations per planar Cu ion. The intensity and
correlation length of the fluctuation signal increase strongly upon cooling
down to the superconducting transition temperature, ; further cooling
below abruptly reverses the divergence of the charge correlations. In
combination with prior observations of a large gap in the spin excitation
spectrum, these data indicate an incipient charge-density-wave instability that
competes with superconductivity.Comment: to appear in Scienc
Momentum-dependent charge correlations in YBaCuO superconductors probed by resonant x-ray scattering: Evidence for three competing phases
We have used resonant x-ray scattering to determine the momentum dependent
charge correlations in YBaCuO samples with highly ordered
chain arrays of oxygen acceptors (ortho-II structure). The results reveal
nearly critical, biaxial charge density wave (CDW) correlations at in-plane
wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity
exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length
are enhanced as superconductivity is weakened by an external magnetic field.
Analogous experiments were carried out on a YBaCuO crystal with
a dilute concentration of spinless (Zn) impurities, which had earlier been
shown to nucleate incommensurate magnetic order. Compared to pristine crystals
with the same doping level, the CDW amplitude and correlation length were found
to be strongly reduced. These results indicate a three-phase competition
between spin-modulated, charge-modulated, and superconducting states in
underdoped YBaCuO.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let
Long-range charge density wave proximity effect at cuprate-manganate interfaces
The interplay between charge density waves (CDWs) and high-temperature
superconductivity is currently under intense investigation. Experimental
research on this issue is difficult because CDW formation in bulk copper-oxides
is strongly influenced by random disorder, and a long-range-ordered CDW state
in high magnetic fields is difficult to access with spectroscopic and
diffraction probes. Here we use resonant x-ray scattering in zero magnetic
field to show that interfaces with the metallic ferromagnet
LaCaMnO greatly enhance CDW formation in the optimally
doped high-temperature superconductor YBaCuO (), and that this effect persists over several tens of nm. The wavevector
of the incommensurate CDW serves as an internal calibration standard of the
charge carrier concentration, which allows us to rule out any significant
influence of oxygen non-stoichiometry, and to attribute the observed phenomenon
to a genuine electronic proximity effect. Long-range proximity effects induced
by heterointerfaces thus offer a powerful method to stabilize the charge
density wave state in the cuprates, and more generally, to manipulate the
interplay between different collective phenomena in metal oxides.Comment: modified version published in Nature Material
- …