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The interplay between charge density waves (CDWs) and high-temperature

superconductivity is currently under intense investigation.1–10 Experimental re-

search on this issue is difficult because CDW formation in bulk copper-oxides

is strongly influenced by random disorder,11–13 and a long-range-ordered CDW

state in high magnetic fields14–17 is difficult to access with spectroscopic and

diffraction probes. Here we use resonant x-ray scattering in zero magnetic field

to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly

enhance CDW formation in the optimally doped high-temperature superconduc-

tor YBa2Cu3O6+δ (δ ∼ 1), and that this effect persists over several tens of nm.

The wavevector of the incommensurate CDW serves as an internal calibration

standard of the charge carrier concentration, which allows us to rule out any

significant influence of oxygen non-stoichiometry, and to attribute the observed

phenomenon to a genuine electronic proximity effect. Long-range proximity ef-

fects induced by heterointerfaces thus offer a powerful method to stabilize the

charge density wave state in the cuprates, and more generally, to manipulate

the interplay between different collective phenomena in metal oxides.
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The recent discovery and characterization of charge density waves (CDWs) in copper-

oxide superconductors1–10 has opened up new perspectives on the long-standing question

whether fluctuations of a competing order parameter drive or enhance high-temperature

superconductivity. While the suppression of static CDW order below the superconducting

(SC) critical temperature, Tc, demonstrates that both ground states are competing, recent

evidence suggests that fluctuating CDWs play an essential role in the mechanism of high-Tc

superconductivity. In particular, doping-dependent resonant x-ray scattering (RXS) studies

indicate that the CDW stability range in the copper-oxide phase diagram ends at the doping

level with optimal Tc, suggesting an important influence of quantum-critical CDW fluctua-

tions on superconductivity.18 Moreover, the fluctuation regimes of SC and CDW order are

almost congruent, and the CDW critical fluctuations have hence been interpreted in terms

of a composite CDW-SC order parameter.10 However, both x-ray scattering 11 and nuclear

magnetic resonance12 experiments have shown that pinning to residual defects is responsible

for the gradual onset of static, short-range CDW order upon cooling, thus revealing a major

influence of disorder on the temperature-dependent CDW correlations even in the cleanest

cuprate superconductors such as YBa2Cu3O6+δ (YBCO). These results agree with theoret-

ical considerations of the influence of quenched disorder on incommensurate CDWs.13 To

fully understand the interplay between CDWs and high-Tc superconductivity, it will thus

be essential to systematically manipulate the structure and density of defects in cuprate

superconductors, and to monitor their influence on CDW formation.

In heterostructures and superlattices, the interplay between different electronic ground

states is modulated through extended heterointerfaces, which can be systematically con-

trolled and characterized.19,20 Electronic proximity effects at interfaces have been intensely

studied in ordinary metals and superconductors, where they typically extend over length

scales of several nm. In metal-oxide heterostructures, there have been various reports of

much longer-range proximity effects. Examples include Josephson tunneling through a 20

nm thick La2CuO4+δ barrier21 and a metal-insulator transition in a 70 nm thick VO2 film

induced by charge transfer at the surface.22 Subsequent work has, however, pointed out the

possibly crucial role of oxygen off-stoichiometry, which can modify the phase behavior of

oxide heterostructures in a bulk-like manner unrelated to interface physics.23 It has thus far

proven difficult to determine the oxygen concentration in thin-film heterostructures precisely

enough to conclusively discriminate between these scenarios.
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We have overcome these difficulties and were able to demonstrate a genuine, long-range

interfacial proximity effect by using RXS to probe CDW correlations in well-characterized su-

perlattices (SLs) of fully oxygenated YBCO and the metallic ferromagnet La2/3Ca1/3MnO3

(LCMO) grown on SrTiO3 substrates (see Methods and Supplementary Materials). The

LCMO layer thickness was kept fixed at 10 nm, and the YBCO layer thickness was set

to D = 10, 20, and 50 nm. Both the substrate-induced strain and the mutual strain of

the SL constituents are negligible and do not influence the physical properties.24 Closely

related multilayer structures have served as model systems for the interplay between ferro-

magnetism and superconductivity,25–29 interfacial orbital and magnetic reconstructions, 30–36

and electron-phonon interactions,24 but the influence of YBCO-LCMO interfaces on CDW

formation has not yet been studied.

Following prior RXS work on bulk YBCO,2,4,6,18 we tuned the photon energy to the L-

absorption edge of planar Cu, so that the resulting data become highly sensitive to the

valence electron system in the CuO2 planes (Fig. 1a). Figure 1b shows RXS scans for three

SLs with different YBCO layer thicknesses at different temperatures. In all three samples,

well-defined incommensurate peaks develop with decreasing temperature around the planar

wave vectors QCDW ∼ (0.3, 0) and (0, 0.3) (which cannot be distinguished in the SLs because

of twinning of the orthorhombic structure). This behavior is closely analogous to the one of

moderately doped bulk cuprates, where it was shown to arise from CDW correlations that

grow upon cooling.2–10 Since the YBCO layers in the SLs are fully oxygenated, however,

the intense CDW peaks observed in the samples with the 20 and 50 nm thick YBCO layers

are in striking contrast to the behavior of bulk YBCO, where the CDW reflections are very

weak or absent at optimal doping.18

In bulk YBCO, the CDW wave vector QCDW was found to decrease approximately lin-

early with the doping level, p, as expected for an instability of a hole-like Fermi surface.18

Taking advantage of this QCDW − p calibration, we can use the positions of the CDW peaks

(which were extracted by fitting the RXS data to Lorentzian profiles, Fig. 1c) to accurately

determine the average doping level, 〈p〉, in the YBCO layers of the SLs with D = 20 and

50 nm thick YBCO layers. (In the sample with D = 10 nm, the error bars are larger due

to the smaller signal intensity.) The plot in Fig. 1d shows that the average YBCO doping

level in SLs the D = 20 nm sample is 〈p〉 ∼ 0.12, placing it in the moderately underdoped

regime of the phase diagram. In the D = 50 nm sample, on the other hand, the YBCO
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layers are optimally doped on average (〈p〉 ∼ 0.15). Note that the momentum width of the

RXS reflections in the SLs is inhomogeneously broadened by averaging both over the charge

density profile and over structural twin domains in the YBCO layers, so that the CDW

correlation length cannot be extracted from the RXS profiles.

These data demonstrate that the average doping level of the YBCO layers increases

with increasing layer thickness, consistent with prior experimental and theoretical work

that demonstrated a transfer of 0.2-0.3 holes per planar Cu across the YBCO-LCMO in-

terface.33–35 While most of this transfer takes place in the first two unit cells,33–35 RXS is

sensitive to the “tail” of the interfacial charge profile, which extends more than 10 nm in-

side the YBCO layer. As a function of distance from the interface, the YBCO layer thus

replicates the entire phase diagram comprising magnetically ordered phases (evidenced by

Cu magnetic moments at the interface),31,32 CDW order, and superconductivity (Fig. 2).

Beyond this qualitative analogy, the intensity of the RXS reflections reveals striking

differences between the CDW correlations in the SLs and in the bulk. Whereas in bulk

optimally doped YBCO the RXS reflections characteristic of CDW order are extremely

weak,18 their intensity in the SLs grows with increasing YBCO layer thickness (and hence

increasing 〈p〉). Note that the LCMO layers are nearly transparent to x-rays in resonance

to the Cu L-absorption edge, and that the YBCO volume probed in all three samples was

comparable (see Methods). The systematic growth of the CDW peak intensity with thickness

and its large intensity for the D = 50 nm sample demonstrate that most (if not all) of the

YBCO volume in this SL is affected by CDW formation. Rather than being pinned to the

interfaces, as expected for an ordinary proximity effect, these data imply that robust CDW

order is present over a large fraction of the 50 nm thick layer with 〈p〉 = 0.15.

Having established the presence of robust CDW order in the 50 nm thick YBCO layer with

〈p〉 = 0.15, we now turn to its temperature and magnetic field dependence. The temperature

dependence of the RXS intensity (Fig. 3) is indicative of a second-order phase transition

with a critical temperature of 110 K. This is in stark contrast to the gradual onset of CDW

correlations with decreasing temperature in bulk cuprates (shown for comparison in Fig. 3),

which has been attributed to the competition between CDW and superconductivity and/or

pinning of CDW domains to random defects.10,11 The RXS intensity in the SLs evolves

smoothly through the superconducting transition, with no sign of the sharp suppression

below Tc seen in bulk YBCO. Moreover, Figure 4 shows that a magnetic field of 6 T does
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not affect the CDW correlations, again in contrast to the behavior of bulk underdoped

YBCO where the CDW is markedly enhanced by magnetic fields of this magnitude.3,6,18

These observations indicate that the CDW state in YBCO-LCMO superlattices is much

closer to a genuine thermodynamic phase than it is in bulk YBCO. This provides a natural

explanation for modifications of the electron-phonon interactions24 and the thermoelectric

properties37 over a similar spatial range. Different mechanisms may contribute to the sta-

bilization of the CDW over a range of tens of nm. In particular, we note that the graded

charge carrier concentration profile (Fig. 2) includes regions close to the interface where p

is optimal for the formation of the CDW.18 These regions can act effectively as coherent

nucleation centers of CDW domains in optimally doped regions further inside the YBCO

layers. In contrast, pinning of incommensurate CDW fluctuations by randomly disordered

defects in bulk YBCO11,12 is presumably much less effective.

We now discuss the proximity-induced monotonic evolution of the CDW order parameter

below Tc. The strong, systematic increase of both the CDW peak intensity and the super-

conducting Tc with YBCO layer thickness implies that CDW order and superconductivity

coexist deep inside the YBCO layers. We therefore consider possible scenarios for laterally

modulated structures comprising both superconducting and CDW order at optimum dop-

ing. The first scenario involves mesoscopic patches of non-superconducting CDW order that

coexist laterally with patches of superconducting order. The order in the CDW patches is

then closely related to the CDW state realized in bulk YBCO7 in magnetic fields of order

100 T, where superconductivity is obliterated by orbital depairing.14–17 The superconducting

patches, on the other hand, are CDW-free, as they are in bulk optimally doped YBCO. Due

to the mesoscopic phase separation, the interaction between the two order parameters is

strongly reduced, thus explaining the lack of suppression of the CDW order parameter be-

low Tc (Fig. 3). However, there is no direct evidence for such mesoscopic phase separation,

and the mechanisms that might give rise to such behavior remain unclear.

Second, superconductivity and CDW order may be microscopically “intertwined”. Since

CDW order is strengthened by proximity to the interfaces and is fully established at the su-

perconducting Tc, the superconducting order parameter has to adjust to the pre-existing

CDW order, perhaps by forming a modulated state akin to the “Fulde-Ferrell-Larkin-

Ovchinnikov” state in ferromagnetic superconductors. Charge transfer across the interface

and proximity to the ferromagnetic LCMO layers may stabilize additional order parame-
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ters (such as incommensurate antiferromagnetism or triplet superconductivity)28,29 that are

admixed into the composite order in the YBCO layers. This may further weaken singlet

d-wave superconductivity relative to the CDW.

Both scenarios are equally intriguing. In the first case, interfaces stabilize a CDW state

that is realized in bulk cuprates only in magnetic fields of order 100 T. Experiments on

interface-enhanced CDWs do not require extreme conditions and hence open up novel per-

spectives for a complete characterization of the electronic structure associated with CDW

formation, including photoemission experiments capable of imaging the full Fermi surface. In

the second scenario, a new form of “intertwined” order is realized in an optimally doped high-

temperature superconductor. Clearly, discriminating between these scenarios will require

further experiments. It will also be interesting to investigate the possible contribution of

CDW correlations to the anomalous transport properties of cuprate heterostructures.21,28,29

Finally, the “tomographic” reconstruction of charge density profiles we have demonstrated

for YBCO-LCMO may also provide novel insights into the interfacial variation of incom-

mensurate spin, charge, and orbital correlations in other metal-oxide heterostructures.19,20

Methods. The RXS experiments were performed in the UHV diffractometer at the UE46-

PGM1 beamline of the Helmholtz Zentrum Berlin,38 working with vertically polarized pho-

tons in a horizontal scattering geometry. To access the QCDW reflection in (001)-oriented

samples, the asymmetric scattering geometry of Fig. 1a was used. Magnetic field depen-

dent measurements were performed in the high-field diffractometer at the same beamline.

The field was oriented at an angle of 11◦ from the c-axis. We investigated superlattices

comprising D nm YBCO - 10 nm LCMO (D = 10, 20, 50), which were grown using pulsed

laser deposition on single crystalline SrTiO3 substrates. A working temperature of 730◦C

and an oxygen partial pressure of 0.5 mbar were used to preserve the desired stoichiometry.

Structural characterization of the same samples studied here with non-resonant Cu Kα x-

rays24 yielded the room-temperature c-axis lattice parameter 11.695(5) Å, close to that of

YBCO with oxygen content δ = 1.39 The oxygen stoichiometry was also verified by Raman

measurements of the A1g apical oxygen mode of YBCO, as described in Ref. 24. The super-

conducting transition temperatures (Tc = 45, 60, 82 K, for D = 10, 20, 50) were determined

by magnetometry.24 The overall thickness of the multilayer stacks (15 bilayer repetitions for

D = 10, 10 for D = 20, and 5 for D = 50 nm) was larger than the x-ray penetration depth
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(∼ 0.1µm at resonance). The interface between the substrate and the multilayer therefore

does not contribute to the RXS intensity, and the YBCO volume illuminated by the x-ray

beam was comparable for all samples.
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Figure 1: Resonant x-ray scattering from YCBO-LCMO superlattices. a, Sketch of the

experimental geometry for one of the SLs. Layer thicknesses, incoming and outgoing x-ray wavevec-

tors (k and k′), and crystallographic axes of YBCO (a, b, c) are marked. b, RXS scans along the Q

= (1,0,0)/(0,1,0) momentum-space direction for SLs with 10, 20, 50 nm YBCO layers taken at tem-

perature T = 10 K (solid symbols). The crosses show background scans at T = 180 K, where the

RXS signal is T -independent. All scans were taken with the same counting time. c, Background-

subtracted data at T = 10 K. The lines are the results of fits to Lorentzian profiles. For clarity,

the data were normalized to the fitted peak amplitude for each scan. d, CDW wavevector observed

in the SLs compared to the QCDW -versus-p relation in single crystal YBCO.18 Since the YBCO

layers in the SLs are twinned, the average of QCDW along the (1,0,0) and (0,1,0) direction in bulk

YBCO is used for comparison. The error bars are smaller than the symbol size.
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Figure 2: Tomographic view of a 50 nm thick YBCO layer in a YBCO-LCMO SL. a,

Electronic phases as a function of depth and temperature including antiferromagnetic insulating

(AFI), spin density wave (SDW), superconducting (SC), and charge density wave (CDW) states.

The bottom panel is an estimate of the corresponding charge carrier concentration p. Detailed

models of the charge carrier profile will have to consider the work function difference between YBCO

and LCMO, the interfacial structure, and chemical intermixing (see Supplementary Materials).
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YBCO. The data for the SL are shown as blue circles and compared to equivalent data on a single
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18 Lines are guides-to-the-eye.
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Figure 4: Magnetic field dependence of the RXS intensity for a SL with 50 nm thick

YBCO. The main panel shows background-subtracted RXS scans with applied magnetic field

nearly along the c-axis, taken at T = 4 K. The inset shows the magnetic field dependence of the

RXS intensity, extracted from the RXS profiles by fitting to Lorentzians.
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