3 research outputs found

    Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors : Process Development, Film Characterization, and Gas Sensing Properties

    Get PDF
    Heteroleptic bis(tert-butylimido)bis(N,N'-diisopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties but exhibit different growth behaviors. With the molybdenum precursor, high growth rates up to 2 angstrom/cycle at 300 degrees C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 angstrom/cycle at 300 degrees C. Highly pure films of both metal oxides are deposited, and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WO films the crystallize as gamma-WO3 at 300 degrees C and above, whereas films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (= 325 degrees C) films. MoOr films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoOx film deposited at 275 degrees C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 degrees C.Peer reviewe

    Room temperature chemiresistive gas sensors: challenges and strategies—a mini review

    No full text

    7. ANHANG

    No full text
    corecore