28 research outputs found

    Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride

    Get PDF
    GeTe is a material of intense topical interest due to its potential in the context of phase-change and nanowire memory devices, as a base for thermoelectric materials, and as a ferroelectric. The combination of a soft optic mode and a Peierls distortion contributes large strains at the cubic-rhombohedral phase transition near 625 K and the role of these has been investigated through their influence on elastic and anelastic properties by resonant ultrasound spectroscopy. The underlying physics is revealed by softening of the elastic constants by ∼30%-45%, due to strong coupling of shear and volume strains with the driving order parameter and consistent with an improper ferroelastic transition which is weakly first order. The magnitude of the softening is permissive of the transition mechanism involving a significant order/disorder component. A Debye loss peak in the vicinity of 180 K is attributed to freezing of the motion of ferroelastic twin walls and the activation energy of ∼0.07 eV is attributed to control by switching of the configuration of long and short Ge-Te bonds in the first coordination sphere around Ge. Precursor softening as the transition is approached from above can be described with a Vogel-Fulcher expression with a similar activation energy, which is attributed to coupling of acoustic modes with an unseen central mode that arises from dynamical clusters with local ordering of the Peierls distortion. The strain relaxation and ferroelastic behavior of GeTe depend on both displacive and order/disorder effects but the dynamics of switching will be determined by changes in the configuration of distorted GeTe6 octahedra, with a rather small activation energy barrier.EPSRC, NER

    Elastic and anelastic relaxations associated with phase transitions in EuTiO3

    Get PDF
    Elastic and anelastic properties of single crystal samples of EuTiO3 have been measured between 10 and 300 K by Resonant Ultrasound Spectroscopy at frequencies in the vicinity of 1 MHz. Softening of the shear elastic constants C44 and by ~20-30% occurs with falling temperature in a narrow interval through the transition point, Tc = 284 K, for the cubic - tetragonal transition. This is accounted for by classical coupling of macroscopic spontaneous strains with the tilt order parameter, in the same manner as occurs in SrTiO3. A peak in the acoustic loss occurs a few degrees below Tc and is interpreted in terms of initially mobile ferroelastic twin walls which rapidly become pinned with further lowering of temperature. This contrasts with the properties of twin walls in SrTiO3 which remain mobile down to at least 15 K. No further anomalies were observed that might be indicative of strain coupling to any additional phase transitions above 10 K. A slight anomaly in the shear elastic constants, independent of frequency and without any associated acoustic loss, was found at ~140 K. It marks a change from elastic stiffening to softening with falling temperature and perhaps provides evidence for coupling between strain and local fluctuations of dipoles related to the incipient ferroelectric transition. An increase in acoustic loss below ~80 K is attributed to the development of dynamical magnetic clustering ahead of the known antiferromagnetic ordering transition at ~5.5 K. Detection of these elastic anomalies serves to emphasise that coupling of strain with tilting, ferroelectric and magnetic order parameters is likely to be a permeating influence in determining the structure, stability, properties and behaviour of EuTiO3.RUS facilities were established in Cambridge through a grant from the Natural Environment Research Council of Great Britain to MAC, which is gratefully acknowledged (NE/B505738/1). LJS acknowledges the support of the National Science Centre (NCN) through Grant MAESTRO No. DEC-2012/04/A/ST3/00342. CP acknowledges Financial support in Greece through grants EURYI and MEXT-CT-2006-039047 grants, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme.This is the accepted version. The final version is published of the final version by APS here: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.054119

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem
    corecore