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GeTe is a material of intense topical interest due to its potential in the context of phase-change and nanowire memory devices, 
as a base for thermoelectric materials and as a ferroelectric. The combination of a soft optic mode and a Peierls distortion contributes 
large strains at the cubic – rhombohedral phase transition near 625 K and the role of these has been investigated through their 
influence on elastic and anelastic properties by resonant ultrasound spectroscopy. The underlying physics is revealed by softening of 
the elastic constants by ~30-45%, due to strong coupling of shear and volume strains with the driving order parameter and consistent 
with an improper ferroelastic transition which is weakly first order. The magnitude of the softening is permissive of the transition 
mechanism involving a significant order/disorder component. A Debye loss peak in the vicinity of 180 K is attributed to freezing of 
the motion of ferroelastic twin walls and the activation energy of ~0.07 eV is attributed to control by switching of the configuration 
of long and short Ge-Te bonds in the first coordination sphere around Ge. Precursor softening as the transition is approached from 
above can be described with a Vogel-Fulcher expression with a similar activation energy, which is attributed to coupling of acoustic 
modes with an unseen central mode that arises from dynamical clusters with local ordering of the Peierls distortion. The strain 
relaxation and ferroelastic behaviour of GeTe depend on both displacive and order/disorder effects but the dynamics of switching will 
be determined by changes in the configuration of distorted GeTe6 octahedra, with a rather small activation energy barrier.  

 
PACS numbers: 62.40.+i, 64.60.Ej, 77.84.Bw 

 

I. INTRODUCTION 
GeTe is a remarkable material in several topical 

contexts, including as an end-member phase for 
crystal-to-amorphous phase change memory [1-4], for 
nanowire memory devices [5], as a base for 
thermoelectric materials [6.7] and as a ferroelectric at 
room temperature which retains “a reversible, size 
dependent polar-nonpolar transition in nanocrystal 
ensembles” [8]. Close interest arises because of the 
particular combination of structure and electronic 
properties which can give fast switching and stable 
storage. These in turn depend on high vacancy 
substitution for Ge [9,10] and a Peierls-type distortion 
of the Ge-Te coordination which persists even above the 
melting point [3,11-14]. The Peierls distortion can also 
be described as a second order Jahn-Teller distortion of 
the first coordination sphere of Te around Ge, due to the 
formation of Te lone pairs [15]. 

In addition to the implications for device 
applications, there has been controversy in relation to 
the origin of ferroelectric properties that arise at a cubic 
(Fm 3 m) – rhombohedral (R3m) phase transition at 
~600-700 K [7,14,16-19] because the electronic 
instability which gives rise to the Peierls distortion 
would give the same change in symmetry as a soft optic 
mode. A classical displacive transition driven by a zone 
centre optic mode was implied by Raman scattering 
results, which showed mode softening up to at least 500 
K [18] and would be consistent with the equivalent 
transition observed at lower temperatures in SnxGe1-xTe 
[20] and PbxGe1-xTe [21]. This displacive mechanism 
was supported by theory [22], by inelastic neutron 
scattering data from a powder sample and by computer 
simulations [23]. However, probes of the local structure 
have shown that the Peierls distortion persists locally in 
the structure at all temperatures up to the melting point 
and, hence, that the transition must involve at least some 
order/disorder of distorted units [13-15].  

Conventional memory devices depend on switching, 
with characteristic mechanisms that involve movement 
of twin walls in response to an applied field. In the case 
of GeTe, the mechanism of ferroelectric switching will 
depend at a local scale on reversing the topology of the 
three long and three short bonds of individual distorted 
GeTe6 octahedra [24]. As well as being ferroelectric, the 
phase transition in GeTe is improper ferroelastic, 
however, and it is inevitable that the rhombohedral 
phase will contain ferroelastic (71/109°) twin walls 
which will also move under an applied electric field, 
though with different dynamics from 180° twin walls. 
This is normal in ferroelectrics such as BaTiO3 and 
Pb(Zr,Ti)O3 but leads to the expectation that GeTe must 
also display diverse acoustic properties which have not 
yet been investigated. The primary objective of the 
present study was to use measurements of elastic and 
anelastic properties to reveal the phenomenological 
richness and underlying physics of  a material which, 
superficially at least, is just a binary compound with the 
rocksalt structure. 

Here we show, firstly, that softening of the shear 
elastic constants due to classical strain/order parameter 
coupling is consistent with a predominantly displacive 
mechanism for the proper ferroelectric/improper 
ferroelastic transition, but with significant contribution 
from order/disorder. Secondly, we argue that precursor 
softening in the stability field of the cubic structure 
provides indirect evidence of a central relaxational 
mode which arises from some dynamical microstructure 
of polar nanoregions or tweed and which couples with 
acoustic modes. Finally, we suggest that the activation 
energy of ~0.1 eV extracted from both a peak in the 
acoustic loss due to freezing of ferroelastic twin walls 
near 200 K, which is consistent with formalism from the 
Debye equations [25], and from a Vogel-Fulcher 
description of the precursor softening is due to motion 
of Ge between the two alternative sites of the Peierls 
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structure. This is likely to be fundamental to the 
dynamical response of GeTe to external fields. 

 
II. STRAIN ANALYSIS 

From the perspectives of strain and elasticity, the 
weakly first order cubic – rhombohedral transition in 
GeTe appears to have all the typical features of being 
improper ferroelastic. A formal strain analysis, based on 
a Landau expansion with strain/order parameter 
coupling using lattice parameter data from the literature, 
is given in the Appendix. Values of the symmetry 
breaking shear strain, e4, and volume strain, ea, are ~3% 
and ~1.8% at room temperature, signifying strain 
coupling comparable in strength to that which 
accompanies Jahn-Teller transitions in perovskites such 
as LaMnO3 [26], but stronger by a factor of ~10 than 
accompanies octahedral tilting transitions in perovskites 
such as SrZrO3 [27]. Variations of these strains with 
temperature can be represented by the standard solution 
to a Landau 2-4-6 potential for a weakly first order 
displacive transition, i.e. with negative fourth order 
coefficient and a small difference between the transition 
temperature, Ttr, and critical temperature, Tc.  

 
III EXPERIMENTAL DETAILS 

The elastic and anelastic properties of a single 
crystal sample cut in the shape of a rectangular 
parallelepiped (1.977x3.283x4.611 mm

3
, 0.1822 gm, but 

with no particular crystallographic orientation) were 
measured by resonant ultrasound spectroscopy (RUS). 
Different pieces of the same boule had previously been 
used for neutron diffraction [17] and synchrotron X-ray 
diffraction [15]. Examination of one or the offcuts by 
electron backscatter diffraction (EBSD) confirmed that 
it was a single crystal.  

The RUS method has been described in detail 
elsewhere [28]. Low-temperature data were collected 
using dynamic resonance system (DRS) ‘modulus II’ 
electronics and an Orange helium-flow cryostat, as 
described by McKnight et al. [29]. The sample was held 
across a pair of faces directly between the transducers. 
The automated sequence involved collection of spectra 
at 30 K intervals during cooling from ∼305 to ∼5 K, 
with a period of 20 min allowed for thermal 
equilibration at each temperature. This was followed by 
heating between ∼5 and ∼300 K, with data collection at 
5 K intervals and the same thermal equilibration period 
at each temperature. Each spectrum contained 65000 
data points in the frequency range 100-1200 kHz. 
Measured temperatures are believed to be accurate to 
within ±1 K, and temperature stability during data 
collection is better than ± 0.1 K. 

High-temperature spectra were collected with the 
sample balanced across a pair of corners between the 
tips of two alumina rods protruding into a horizontal 
tube furnace. In this system, the transducers are on the 
ends of the rods, outside the furnace, as described by 
McKnight et al. [30], and spectra are collected using 
Stanford electronics [31]. Temperature is monitored by 
a thermocouple sited within a few millimeters of the 
sample and checked from time to time against the α-β 
transition temperature of quartz, giving an experimental 
uncertainty of ±∼1 K. Spectra were collected in heating 
and cooling sequences, from ~300 to ~560 K with ~20 
K steps, from ~560 to ~650 K with 2 K steps, from 

~650 to ~750 K with 5 K steps, and then from ~750 to 
~650 K with 5 K steps, from ~650 to ~560 K with 2 K 
steps, from ~560 to ~300 K with ~10 K steps. A period 
of 20 min was again allowed for thermal equilibration at 
each temperature. Individual spectra contained 65000 
data points in the frequency range 50-1200 kHz. 

 
IV RESULTS 

Segments of the primary RUS spectra collected 
during cooling through the phase transition (Fig. 1) 
show sharp resonance peaks all stiffening (increasing in 
frequency, f) slightly with decreasing temperature from 
~760 K down to ~700 K, and then softening steeply to a 
minimum at ~620 K, which is taken to be the transition 
point. The softening trend then reverses and stiffening 
occurs down to the lowest temperature reached (7 K). 
The width at half maximum height, Δf, of all the peaks 
peaks broaden immediately below the transition point 
(Fig. 1a) and there is an additional interval of peak 
broadening below ~200 K (Fig. 1b).  

 
FIG. 1 (colour online). Segments of RUS spectra collected 
from a rectangular parallelepiped of GeTe with dimensions 
1.977x3.283x4.611 mm3 and mass 0.1822 gm. Each spectrum 
has been offset up the y-axis in proportion to the temperature 
at which it was collected. (a) Cooling sequence, ~760 K to 
room temperature. (b) Heating sequence, ~7 K to room 
temperature. 
 

Fitting of selected peaks provides a quantitative 
picture of the qualitative patterns shown by the primary 
spectra (Fig. 2). Variations of f

2
 give the temperature 

dependence of predominantly shear elastic constants, 
and Q

-1
 (= Δf/f) is a measure of acoustic loss. The total 

amount of softening with respect to the parent cubic 
structure is ~45% at the transition point but reduces to a 
more nearly constant value of ~30% at lower 



 

 
 

3 
temperatures (Fig. 2a). This form of non-linear recovery 
below Ttr (~620 K on cooling and ~630 K on heating), is 
closely similar to that expected for tricritical evolution 
of the order parameter (e.g. Refs 27, 32).  

 
FIG. 2 (colour online). (a) Temperature-dependence of f2 for 
selected resonances, scaled to overlap near room temperature. 
A small hysteresis of the transition point between heating 
(~630 K) and cooling (~620 K) indicates weak first order 
character. The straight line is a fit to data collected at the 
highest temperatures and extrapolated to lower temperatures in 
order to represent reference values, fo

2, of the cubic structure. 
(b) Temperature-dependence of Q-1 from selected resonances, 
showing a marked break in trend at ~650 K, a peak in the 
vicinity of the minimum in f2, and frequency-dependent 
maxima near 180 K.  

 
V. DISCUSSION 

A. Order/disorder component 
From Landau theory, the excess entropy for a phase 

transition is given by –a/2, where a is the coefficient for 
the second order term in the order parameter, q. The 
change in heat capacity at T = Tc, Cp,Tc, of the second 
order transition in SnTe is ~0.5 J.mole

-1
.K

-1
 [33]. For an 

excess free energy given by 1
2
a T -T

c( )q2 + 1
4
bq4

, the 
excess heat capacity varies as aT/2Tc [34], so that a = 
2Cp,Tc = ~1 J.mole

-1
.K

-1
. The total excess entropy for 

the change from q = 0 to q = 1 is then ~ –0.5 
J.mole

-1
.K

-1
, which would be typical of a displacive 

transition mechanism. At small values of x in SnxGe1-xTe, 
the transition remains second order [20,33,35] and a 
classic step-like softening of elastic constants is 
observed, fitting with expectations for the displacive 
limit to which Landau theory refers [36-38]. Cp 
increases with increasing Ge content [35], however, 
implying that the excess entropy also increases, as 
would be expected if there is an increasing 
configurational contribution. Estimates of the magnitude 
of the excess entropy from integration of the excess heat 

capacity for GeTe samples with a range of 
stoichiometries are in the range 0.9 - 3.1 J.mole

-1
.K

-1
 

[39], though this is still less than than the expected 
value of –Rln2 = –5.8 J.mole

-1
.K

-1
 for the simplest AB 

ordering process.  
Following Slonczewski and Thomas [40], the 

magnitude of softening at a second order transition with 
strain, e, coupled as eq

2
 scales approximately with 2

/b, 
where the value of the b coefficient is approximately 
aTc. Antiferromagnetic ordering in CoF2 below ~39 K 
has an excess entropy close to –Rln2 and is 
accompanied by spontaneous strains of ~0.001 and ~3% 
softening of the shear modulus [41]. To first 
approximation, allowing for the same configurational 
entropy, an order of magnitude increase in  and an 
order of magnitude increase in Tc should lead to an 
order of magnitude increase in the amount of softening 
in GeTe, which is essentially what is observed. In other 
words, the elastic softening is permissive of a high 
excess entropy, consistent with a significant 
configurational component. Moreover, the simplest 
model for order/disorder gives an evolution of the order 
parameter which is not so far from tricritical in form 
[41].  

 
B. Acoustic loss 

Q
-1

 values at first reduce with falling temperature 
but have a sharp increase below ~644 K on heating and 
~640 K on cooling towards maxima which, within 
experimental uncertainty, coincide with the minima in f

2
 

(Fig. 2b). Variations of Q
-1

 below Ttr also display typical 
aspects of the patterns of anelastic loss seen at improper 
ferroelastic transitions in perovskites. The peak at Ttr 
closely resembles the peak seen at the transition 
temperature for octahedral tilting in EuTiO3 [42,43], 
SrZrO3 [27] and Ca0.2Sr0.8TiO3[44]. The plateau of high 
Q

-1
 between ~500 and ~300 K results from the motion 

under external stress of ferroelastic twin walls in an 
effectively viscous medium. Finally, the 
frequency-dependent Debye peak at ~180 K is typical of 
the effects of pinning of the twin walls by defects 
through some freezing interval, as seen for the tilting 
transition in KMnF3 [45] and for the ferroelectric 
transition in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 - PbTiO3. 
[46]. 

Similar patterns of acoustic loss are seen at lower 
frequencies in LaAlO3 and (Ca,Sr)TiO3 where the 
overall behavior is due to forward and back motion of 
the needle tips of ferroelastic twin walls and the 
freezing mechanism is essentially pinning of the twin 
walls by oxygen vacancies [47-50]. Under the low stress 
and higher frequency conditions of an RUS experiment, 
the twin wall displacement mechanism most likely 
involves lateral motions of ledges along the length of 
the walls [51-53]. For present purposes, values of the 
temperatures, Tm, at which the Debye loss peaks in 
Figure 2b have a maximum, Q

m

-1
, were first determined 

by fitting a polynomial function to data between ~10 K 
and ~300 K. A thermally activated loss mechanism with 
relaxation time, , given by the condition  = 1 
(angular frequency  = 2f) at Tm is expected to follow 
t = t

o
exp U k

B
T( ) ; U is the activation energy, τo the 

reciprocal of the attempt frequency and kB the 
Boltzmann constant. An Arrhenius plot gives U/kB = 
763 ± 53 K (U = 0.066 ± 0.005 eV) and τo = 3 ± 1 x 10

-8
 



 

 
 

4 
s (Fig. 3). This value of U is close to the activation 
energy barrier of 0.11 eV obtained by DFT calculation 
for a switching process that involves swapping of 
shorter and longer Ge-Te bonds in which the Ge atoms 
move by ~0.3 Å [24]. The experimental result therefore 
appears to confirm the suggestion in Ref. [24] that such 
movements could be important in the mechanism of 
domain wall movement. Mechanisms involving 
vacancies can probably be ruled out on the basis that 
activation energies for diffusion of Ge in GeTe are 
expected to have values ≥ ~1 eV [54]. 

 

FIG. 3. Arrhenius plot of frequency, f, versus 1/Tm, from the 

data of Table I. An activation energy U = 0.066 ± 0.005 eV is 

obtained from the slope and o = 2.8 x 10-8 ± ~1 x 10-8 s from 

one over the intercept. 

 
Each Debye loss peak can also be fit using the 

expression [45,53,55,56]
 

Q-1 T( ) =Q
m

-1 cosh
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k
B
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,  (1) 

where r2(β) relates to the width of a Gaussian spread of 
relaxation times. The parameter  is a measure of the 
width of the Gaussian distribution, as illustrated in 
Figure 4-6 of Nowick and Berry [25], and is zero for a 
standard anelastic solid. Fits of this expression to the 
data have been added to Figure 2a and give values of 
U/kBr2(β) in the range ~350-650 K. If U = 0.066 eV is 
assumed from the simpler treatment, the fits give r2(β) 
in the range 1.2 – 2.2, with the value near ~2 being 
poorly constrained (Table I). The implication is that 
there is a single pinning mechanism with only a small 
spread of relaxation times (β ~ 0, r2(β) ~ 1). 
 
Table I. Fit parameters for Debye-like loss peaks. 

Frequency 
at Tm (Hz) 

Tm (K) Q
m

-1 r2(β) U (eV) 

302640 160.2 0.00177 1.4 ± 0.1 0.066 
545230 181.8 0.00131 1.2 ± 0.1 0.066 
572820 187.4 0.00141 1.2 ± 0.2 0.066 
719710 194.6 0.00094 2.2 ± 0.3 0.066 

 
C. Precursor softening dynamics 

Precursor softening of the elastic constants as an 
improper ferroelastic transition point is approached 
from above provides insights into dynamic effects 
because linear/quadratic coupling between the non-zero 

strains and the driving order parameter does not 
contribute any softening when q = 0. Fluctuations 
relating to dispersion of the soft mode can be 
responsible and would be expected to conform to a 
phenomenological description of the form
DC

ik
= A

ik
T -T

c( )
-k

, where DC
ik

 is the amount of 
softening of single crystal elastic constants and Aik is a 
material constant. The value of the exponent , between 
1/2 and 2, depends on the anisotropy and dispersion of 
soft branches round the critical point of the soft mode 
[32,57-60]. 

Alternatively, the dynamical effects ahead of a 
ferroelectric transition can be due to the development of 
polar nanoregions. These are purely dynamic 
immediately below the Burns temperature but can 
become quasi-static at a temperature T* before they 
freeze. Softening of the shear modulus occurring in this 
way in Pb(Mg1/3Nb2/3)O3 [61] and Pb(Sc0.5Ta0.5)O3 [62] 
can be represented by a Vogel-Fulcher expression 

DC
ik

= A
ik

exp U k
B
T -T

VF( )é
ë

ù
û , where TVF is the 

zero-frequency freezing temperature. The extent of 
precursor softening for GeTe is expressed here as f

2
 = 

(fo
2
–f

2
), where fo

2
 is the square of the resonance 

frequency obtained from a linear fit to the highest 
temperature data, extrapolated down to Ttr (Fig. 2a). f

2
 

for resonances with frequency near 530 kHz (heating 
sequence) or 480 kHz (cooling sequence) at room 
temperature are shown in Figure 4. The power law 
description, with a value of Tc = 581 K taken from the 
strain analysis of data from Ref. [15], would not provide 
a good description (Fig. 4a) but the Vogel-Fulcher 
expression with U = 0.10 ± 0.06 eV and TVF = 520 ± 30 
or TVF = 530 ± 30 K can for heating or cooling 
respectively (Fig. 4b). Remarkably, the activation 
energy for the fits is almost the same as for domain wall 
freezing, which appears to imply that the energy barrier 
associated with the freezing process is also determined 
by changing the configuration of short and long Ge-Te 
bonds. 
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FIG. 4 (colour online). Variations of f2 = (fo

2
–f

2
) with 

temperature. (a) The data above the transition temperature do 
not have a linear temperature dependence with slope between 
-1/2 and -2, as would be expected for a power law description 
for Tc = 581 K. (b) Curves through the data above Ttr are fits 
of a Vogel-Fulcher equation. 

 
We propose that the precursor elastic softening seen 

in all mechanical resonances of the GeTe sample 
reflects coupling of the acoustic modes with a central 
relaxational mode due to dynamical clustering of polar 
regions in the manner reported recently for the 
ferroelectric transition in Pb(Fe0.5Nb0.5)O3 [63]. The 
central mode would involve flipping of the polarization 
or displacements of boundaries between ordered clusters, 
and TVF represents the temperature at which this motion 
would be expected to cease if the ferroelectric transition 
did not intervene. A test would be observation of a mode 
(or modes) with relaxation times perhaps in the vicinity 
of ~10

-10
 s, as appears to have been detected in terahertz 

spectra by Kadlec et al.
 
[64]. Such a central mode would 

also be expected to couple with optic modes which 
might therefore provide indirect evidence of its unseen 
presence. There is a distinct kink in the f

2
 data at 

~640-645 K during both heating and cooling, (Fig. 4a) 
and this is interpreted as representing the temperature, 
T*, where the clusters acquire some static component. 
The change in trend of f

2
 coincides with the abrupt 

change in trend for Q
-1

 (Fig. 2b), as would be expected 
if it marks the development of some ferroelastic 
microstructure with falling temperature - for which the 
most likely form would be tweed. Some degree of strain 
coupling of the dynamical clustering at T > T* is 
evidenced by the persistence of relatively high values of 
Q

-1
 up to the highest temperatures of the measurements 

presented here. 
The acoustic data complement the evidence of 

clustering from pair distribution analysis of diffraction 
data presented in Ref. [15]. The sample used in the 
present study is from the same original boule and close 
agreement for the transition temperature implies that the 
compositions are closely similar. Hudspeth et al. [15] 
described ordered clusters with dimension ~20 Å in the 
stability field of the cubic structure, with a steep 
increase in correlation length between 650 K and 500 K. 
This interval coincides almost exactly with the interval 
over which Q

-1
 shows a peak through the transition. 

Correlations of the distorted GeTe polyhedra can 
therefore be understood as being at first dynamic on the 
cluster length scale and then quasi-static below ~645 K 
when the length scale of the correlations starts to 
increase. As pointed out already by Chatterji et al. [16], 
the positive volume strain observed for GeTe has 
essentially the same form as seen in LaMnO3 where the 
transition mechanism involves ordering of MnO6 
octahedra with Jahn-Teller distortions.  

 
VI. CONCLUSIONS 

Elastic and anelastic anomalies provide a sensitive 
window on the strength and dynamics of strain coupling 
effects which accompany structural, magnetic and 
electronic phase transitions in perovskites [53]. In the 
case of GeTe, large softening of the shear elastic 
constants and strong coupling of the driving order 
parameter(s) with shear strain are consistent with 
improper ferroelastic character for the Fm 3m – R3m 
transition. The temperature dependence of the strain 
evolution and the form of the elastic softening is 
consistent with a mean field description of a displacive 
transition which is close to tricritical. The magnitude of 
the softening, however, is permissive of a significant 
configurational component coming from order/disorder 
of distorted GeTe polyhedra. The softening data also 
provide evidence for the influence of an unseen central 
relaxational mode. An activation energy barrier of ~0.1 
eV seems to control both the dynamics of the ordering 
process and of the resulting ferroelastic microstructures. 
As such it is likely to represent the thermal barrier for 
switching processes. 

GeTe already has remarkable macroscopic properties 
but the existence of polar domains, tweed 
microstructures and possible combinations of 180° and 
71/109° twin walls opens up additional possibilities in 
the context of domain engineering and the use of 
transformation microstructures for providing device 
properties [65,66]. For example, the proximity to a 
metal - insulator transition [5], due to the particular 
coupling between atomic structure and electronic 
structure, means that is inevitable that the electrical 
properties of twin walls will differ from those of the 
domains. 
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APPENDIX: SYMMETRY AND STRAIN 
ANALYSIS 

Ferroelectric dipoles typically develop in GeTe due 
to displacements of Ge and Te atoms following the 
evolution of order parameter components that belong to 
the irreducible representation Γ4

− of parent space group 
Fm 3̅ m. As well as being ferroelectric at room 
temperature, GeTe is in principle improper ferroelastic 
due to coupling of the G

4

-  order parameter with strain. 
Following Rehwald and Lang [36] and Sugai et al. [21], 
the Landau expansion for the excess free energy, G, 
including saturation is 

G =
1

2
aQ

s
coth

Q
s

T
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         (A.1) 
q1-q3 are order parameter components, a, b, c, etc., are 
normal Landau coefficients, s is the saturation 

temperature for the order parameter, Tc is the critical 
temperature, λ1, λ2, λ3 are coupling coefficients, C

11

o , 

C
12

o , C
44

o , are bare elastic constants, e4, e5, e6 are strain 
components. The symmetry-adapted strains, ea, eo and et 
are combinations of the linear strain components e1, e2, 
and e3, as 

e
a

= e
1
+ e

2
+ e

3( )       (A.2) 

e
o

= e
1

- e
2( )        (A.3) 

e
t
=

1

3
2e

3
- e

1
- e

2( )      (A.4) 

Space groups, non-zero order parameter 
components and lattice vectors for the symmetry 
subgroups of Fm 3m associated with G

4

-  are listed in 
full in Table A.I. Order parameter components for the 
R3m structure are q1 = q2 = q3 ≠ 0, and equation (A.1) 
reduces to 

G =
3
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coth
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è
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         (A.5) 

 

 

Table A.I. Space groups, non-zero order parameter components, and lattice vectors (origin = (0,0,0)), for the symmetry 

subgroups of Fm 3m associated with active representation G
4

-
, as obtained from the group theory program ISOTROPY 

[67]. 

Space 
group 

Order parameter 
components 

Relationships between 
order parameter 
components 

Lattice vectors 

Fm3̅m 000  (0,0,0)(0,0,0)(0,0,0) 
I4mm q100  (0,1/2,1/2)(0,-1/2,1/2)(1,0,0) 
Imm2 q1q20 q1=q2 (-1/2,1/2,0)(0,0,1)(1/2,1/2,0) 
R3m q1q2q3 q1=q2=q3 (-1/2,1/2,0)(0,-1/2,1/2)(1,1,1) 
Cm q1q20 q1≠q2 (-1,0,0)(0,0,1)(1/2,1/2,0) 
Cm q1q2q3 q1=q2≠q3 (1/2,1/2,1)(-1/2,1/2,0)(-1/2,-1/2,0) 
P1 q1q2q3 q1≠q2≠q3 (0,1/2,1/2)(1/2,0,1/2)(1/2,1/2,0) 

 

If reference axes X, Y and Z are chosen as being 
parallel to the cubic crystallographic axes, the non-zero 
strain components are given by 

e1 = e2 = e3 = 
a- a

o

a
o

     (A.6) 

e4 = e5 = e6 = 
a

a
o

cosa  ≈ cosα ,   (A.7) 

where ao is the reference parameter of the cubic 
structure extrapolated into the rhombohedral stability 
field, a is the lattice parameter of the rhombohedral 
structure and  is its (pseudocubic) lattice angle. The 
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equilibrium condition ∂G/∂e =0 gives relationships 
between strains and order parameter components as 

e
a

= -
3l

1
q

1

2

1
3
C

11

o + 2C
12

o( )
      (A.8) 

eo = et = 0        (A.9) 

e4 = e5 = e6 = -
l

3
q

1
2

C
44

o
.     (A.10) 

These relationships are used here to determine the 
thermodynamic character of the cubic - rhombohedral 
transition. 

Cell parameter data from single crystal neutron 
diffraction [17] and X-ray powder diffraction [7] are 
reproduced in Figure A.1a. Normally, a fit of the 
function [68-72]  

a
o

= a
1
+ a

2
Q

so
coth

Q
so

T

æ

è
çç

ö

ø
÷÷     (A.11) 

(where so is a saturation temperature for thermal 
expansion) is used to obtain the reference cubic lattice 
parameter, but there are insufficient data in the stability 
field of the cubic phase for this. However, variations of 
the shear strain, e4, are to good approximation given by 
cos and are consistent with the known, weakly first 
order character of the transition (Fig. A.1b). Added to 
Figure A.1a and A.1b are data from the study of 
Chatterji et al. [16] which were not shown in the 
original paper, and from Hudspeth et al. [15] obtained 
using synchrotron x-ray powder diffraction. The latter 
have been used to yield fits of Equation A.11 for ao and, 
hence, to determine the values of ea which are given in 
Figure A.1c. From Equations A.8 and A.10, ea and e4 are 
expected to be linearly dependent but this appears not to 
be the case within reasonable experimental uncertainty 
(Fig. A.1d).  Either there is additional higher order 
coupling with one or other of the strains, i.e. such as 
eQ

4
, or one order parameter alone is not sufficient to 

describe the overall transformation behaviour. 
 

 
FIG. A.1. Strain analysis of the Fm3̅m – R3m transition in GeTe, showing weakly first order character. (a) Cell parameter variations 

compiled from the literature. Straight lines fit to data points for a at the highest temperatures represent the variations of ao 

extrapolated to lower temperatures. (b) Curves through the data for cos (~e4  q1
2) are fits of Equation A.12, with Ttr fixed at values 

specified in the original work and values of the fit parameters given in Table A.II. (c) Curves through the data for ea ( q1
2) are fits of 
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Equation A.12, with parameters given in Table A.II. (d) ea does not scale linearly with e4 as expected from Equations A.8 and A.10 

over the entire range.  

 
As in the case of the  –  transition in quartz [73] 

the evolution of the order parameter is expected to 
follow the standard Landau solution for a first-order 
transition:  

Q2 =
2

3
Q

o

2 1+ 1-
3

4

T -T
c

T
tr

-T
c

æ

è
çç

ö

ø
÷÷

é

ë
ê
ê

ù

û
ú
ú

1
2

ì

í
ï

î
ï

ü

ý
ï

þ
ï

   (A.12) 

where Qo is the discontinuity in the order parameter at 
the transition temperature, Ttr. The difference between 
Ttr and the critical temperature, Tc, is a measure of how 
far the transition is from being thermodynamically 
continuous and, although this should include the 
saturation temperature from Equation A.5, it is usually 
adequate to ignore it in fitting data above room 
temperature. Figures A.1b and A.1c show fits of a 
function of the form of Equation A.12 to data for e4 and 
ea derived from the lattice parameters of Levin et al. [7], 
Chatterji et al. [16] and Hudspeth et al. [15]. Ttr was 
fixed at the experimental values and the resulting fit 
parameters are listed in Table A.II. Just as found for the 
first order transition at compositions towards the Sn-rich 
end of the SnxGe1-xTe solid solution [18], the Landau 
solution provides a good representation of the strain 
variations. Although the transition temperature varies 
between samples, the pattern of strain evolution is 
similar and values of (Ttr – Tc) fall in the range 1-50 K. 
Changes of Ttr between samples of GeTe are widely 
attributed to the effects of changing stoichiometry (e.g. 
Ref. 17]), and might also contribute to changes in the 
strength of strain/order parameter coupling or changes 
in the thermodynamic character of the transition but 
there are insufficient data to test this possibility 
systematically through correlations of (Ttr – Tc) with the 
value of Ttr, say. 
 
Table A.II. Fit parameters from Figure A.1 using Equation 

A.12.  

Source of data cosαo/eao Ttr (K) 
(fixed) 

Tc 
(K) 

Ttr–Tc 
(K) 

Chattopadhyay 
and Boucherle 
[17] 

cosαo = 
0.0109 

705 680 25 

Chatterji et al. 
[16]  

cosαo = 
0.0086 

600 589 11 

Levin et al. [7] 
X-ray 

cosαo = 
0.0070 

640 630 10 

Chatterji et al. 
[16]  

eao = 
0.0015 

600 599 1 

Hudspeth et al. 
[15]  

eao = 
0.0088 

635 581 54 
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