181 research outputs found

    Tilt effects on moment tensor inversion in the near field of active volcanoes

    Get PDF
    Dynamic tilts (rotational motion around horizontal axes) change the projection of local gravity onto the horizontal components of seismometers. This causes sensitivity of these components to tilt, especially at low frequencies. We analyse the consequences of this effect onto moment tensor inversion for very long period (vlp) events in the near field of active volcanoes on the basis of synthetic examples using the station distribution of a real deployed seismic network and the topography of Mt. Merapi volcano (Java, Indonesia). The examples show that for periods in the vlp range of 10-30 s tilt can have a strong effect on the moment tensor inversion, although its effect on the horizontal seismograms is significant only for few stations. We show that tilts can be accurately computed using the spectral element method and include them in the Green's functions. The (simulated) tilts might be largely influenced by strain-tilt coupling (stc). However, due to the frequency dependence of the tilt contribution to the horizontal seismograms, only the largest tilt signals affect the source inversion in the vlp frequency range. As these are less sensitive to stc than the weaker signals, the effect of stc can likely be neglected in this application. In the converse argument, this is not necessarily true for longer periods, where the horizontal seismograms are dominated by the tilt signal and rotational sensors would be necessary to account for it. As these are not yet commercially available, this study underlines the necessity for the development of such instrument

    Chloro­bis­(naphthalen-1-yl)phosphane

    Get PDF
    In the title compound, C20H14ClP, the dihedral angle between the naphthyl rings is 81.77 (6)°. The crystal packing suggests weak π–π stacking inter­actions between the naphthyl rings in adjacent units [minimum ring centroid separation 3.7625 (13) Å]

    Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)

    Get PDF
    Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths. DyY2N@C80 and Dy2YN@C80 were found to be non-luminescent, while the luminescence reported for DyY2N@C80 was caused by traces of Y3N@C80 and Y2ScN@C8

    High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite

    Get PDF
    High-porosity dunite channels are important pathways for melt migration in the mantle. To better understand the first order characteristics of the high-porosity melt channel and its associated peridotite lithologies in an upwelling mantle, we conducted high-resolution numerical simulations of reactive dissolution in a deformable porous medium. Results from this study show that high-porosity dunite channels are transient and shallow parts of pathways for melt migration in the mantle. The lower parts of a high-porosity channel are harzburgite and lherzolite. The size and dimension of dunite channels depend on the amplitude of lateral porosity variations at the base of the melting column, whereas the depth of dunite channel initiation depends on the melt flux entering the channel from below. Compaction and interaction between compaction and dissolution play a central role in distributing melt in the dunite channel. A wide orthopyroxene-free dunite channel may contain two or more high-porosity melt channels. A primary high-porosity melt channel developed in the deep mantle may excite secondary melt channels in the shallow part of the melting column. The spatial relations among the high-porosity melt channel and its associated lithologies documented in this study may shed new light on a number of field, petrological, and geochemical observations related to melt migration in the mantle. Citation: Liang, Y., A. Schiemenz, M. A. Hesse, E. M. Parmentier, and J. S. Hesthaven (2010), High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite, Geophys. Res. Lett., 37, L15306, doi:10.1029/2010GL044162

    Atmospheric Density Uncertainty Quantification for Satellite Conjunction Assessment

    Full text link
    Conjunction assessment requires knowledge of the uncertainty in the predicted orbit. Errors in the atmospheric density are a major source of error in the prediction of low Earth orbits. Therefore, accurate estimation of the density and quantification of the uncertainty in the density is required. Most atmospheric density models, however, do not provide an estimate of the uncertainty in the density. In this work, we present a new approach to quantify uncertainties in the density and to include these for calculating the probability of collision Pc. For this, we employ a recently developed dynamic reduced-order density model that enables efficient prediction of the thermospheric density. First, the model is used to obtain accurate estimates of the density and of the uncertainty in the estimates. Second, the density uncertainties are propagated forward simultaneously with orbit propagation to include the density uncertainties for Pc calculation. For this, we account for the effect of cross-correlation in position uncertainties due to density errors on the Pc. Finally, the effect of density uncertainties and cross-correlation on the Pc is assessed. The presented approach provides the distinctive capability to quantify the uncertainty in atmospheric density and to include this uncertainty for conjunction assessment while taking into account the dependence of the density errors on location and time. In addition, the results show that it is important to consider the effect of cross-correlation on the Pc, because ignoring this effect can result in severe underestimation of the collision probability.Comment: 15 pages, 6 figures, 5 table
    corecore