721 research outputs found

    Guidelines for stakeholder engagement in systematic reviews of environmental management

    Get PDF
    Abstract: People have a stake in conservation and environmental management both for their own interests and the sake of the environment itself. Environmental decision-making has changed somewhat in recent decades to account for unintentional impacts on human wellbeing. The involvement of stakeholders in environmental projects has been recognised as critical for ensuring their success and equally for the syntheses of evidence of what works, where, and for whom, providing key benefits and challenges. As a result of increased interest in systematic reviews of complex management issues, there is a need for guidance in best practices for stakeholder engagement. Here, we propose a framework for stakeholder engagement in systematic reviews/systematic maps, highlighting recommendations and advice that are critical for effective, efficient and meaningful engagement of stakeholders. The discussion herein aims to provide a toolbox of stakeholder engagement activities, whilst also recommending approaches from stakeholder engagement research that may prove to be particularly useful for systematic reviews and systematic maps

    Detection and localization of multiple rate changes in Poisson spike trains

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. In statistical spike train analysis, stochastic point process models usually assume stationarity, in particular that the underlying spike train shows a constant firing rate (e.g. [1]). However, such models can lead to misinterpretation of the associated tests if the assumption of rate stationarity is not met (e.g. [2]). Therefore, the analysis of nonstationary data requires that rate changes can be located as precisely as possible. However, present statistical methods focus on rejecting the null hypothesis of stationarity without explicitly locating the change point(s) (e.g. [3]). We propose a test for stationarity of a given spike train that can also be used to estimate the change points in the firing rate. Assuming a Poisson process with piecewise constant firing rate, we propose a Step-Filter-Test (SFT) which can work simultaneously in different time scales, accounting for the high variety of firing patterns in experimental spike trains. Formally, we compare the numbers N1=N1(t,h) and N2=N2(t,h) of spikes in the time intervals (t-h,t] and (h,t+h]. By varying t within a fine time lattice and simultaneously varying the interval length h, we obtain a multivariate statistic D(h,t):=(N1-N2)/V(N1+N2), for which we prove asymptotic multivariate normality under homogeneity. From this a practical, graphical device to spot changes of the firing rate is constructed. Our graphical representation of D(h,t) (Figure 1A) visualizes the changes in the firing rate. For the statistical test, a threshold K is chosen such that under homogeneity, |D(h,t)|<K holds for all investigated h and t with probability 0.95. This threshold can indicate potential change points in order to estimate the inhomogeneous rate profile (Figure 1B). The SFT is applied to a sample data set of spontaneous single unit activity recorded from the substantia nigra of anesthetized mice. In this data set, multiple rate changes are identified which agree closely with visual inspection. In contrast to approaches choosing one fixed kernel width [4], our method has advantages in the flexibility of h

    The use of cystatin C to inhibit epithelial–mesenchymal transition and morphological transformation stimulated by transforming growth factor-β

    Get PDF
    INTRODUCTION: Transforming growth factor-β (TGF-β) is a potent suppressor of mammary epithelial cell (MEC) proliferation and is thus an inhibitor of mammary tumor formation. Malignant MECs typically evolve resistance to TGF-β-mediated growth arrest, enhancing their proliferation, invasion, and metastasis when stimulated by TGF-β. Recent findings suggest that therapeutics designed to antagonize TGF-β signaling may alleviate breast cancer progression, thereby improving the prognosis and treatment of breast cancer patients. We identified the cysteine protease inhibitor cystatin C (CystC) as a novel TGF-β type II receptor antagonist that inhibits TGF-β binding and signaling in normal and cancer cells. We hypothesized that the oncogenic activities of TGF-β, particularly its stimulation of mammary epithelial–mesenchymal transition (EMT), can be prevented by CystC. METHOD: Retroviral infection was used to constitutively express CystC or a CystC mutant impaired in its ability to inhibit cathepsin protease activity (namely Δ14CystC) in murine NMuMG MECs and in normal rat kidney (NRK) fibroblasts. The effect of recombinant CystC administration or CystC expression on TGF-β stimulation of NMuMG cell EMT in vitro was determined with immunofluorescence to monitor rearrangements of actin cytoskeletal architecture and E-cadherin expression. Soft-agar growth assays were performed to determine the effectiveness of CystC in preventing TGF-β stimulation of morphological transformation and anchorage-independent growth in NRK fibroblasts. Matrigel invasion assays were performed to determine the ability of CystC to inhibit NMuMG and NRK motility stimulated by TGF-β. RESULTS: CystC and Δ14CystC both inhibited NMuMG cell EMT and invasion stimulated by TGF-β by preventing actin cytoskeletal rearrangements and E-cadherin downregulation. Moreover, both CystC molecules completely antagonized TGF-β-mediated morphological transformation and anchorage-independent growth of NRK cells, and inhibited their invasion through synthetic basement membranes. Both CystC and Δ14CystC also inhibited TGF-β signaling in two tumorigenic human breast cancer cell lines. CONCLUSION: Our findings show that TGF-β stimulation of initiating metastatic events, including decreased cell polarization, reduced cell–cell contact, and elevated cell invasion and migration, are prevented by CystC treatment. Our findings also suggest that the future development of CystC or its peptide mimetics hold the potential to improve the therapeutic response of human breast cancers regulated by TGF-β

    Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As

    Full text link
    The recent development of MBE techniques for growth of III-V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, i.e. electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.Comment: 37 pages, 4 figure
    corecore